机器学习实战-决策树

1.决策树的构造

1.1优缺点

优点:

  • 计算复杂度不高:以ID3为例,每次运算都是基于某一列特征,特征计算完后,下次计算不考虑该最有特征,并且通过适当剪枝可以简化复杂度

  • 输出结果易于理解:因为输出的是一个树的结构,树的走向一目了然

  • 对中间值的缺失不敏感

  • 可以处理不相关特 征数据:是基于每列特征来计算,不考虑特征之间的依赖关系

缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。

1.2信息熵

主要用来度量信息的混乱程度,信息越混乱,说明能够包含的信息量越多,则熵越大。反之若信息越有序说明包含的信息量越少,则熵越小。

1.3信息增益

标准的说法就是:一个随机变量的引入导致了另一个随机变量的混乱性变化(约束),如果约束越大,信息增益就越大。举个通俗易懂的例子就是:比如你去银行贷款,如果你自己的个人信息你对贷款员什么都不说,那贷款员是不是就很不确定是否贷款给你,如果你只说了你的薪资,那较之前相比,贷款员是否给你贷款是不是就多了一种判断的依据,也就是说,你告诉贷款员你的个人信息越多,贷款员是否给你贷款就越确定,此时的信息增益也就是最大。在举一个例子:了解一个人的信息,如果给一个身份证号,由于每个人的身份证号都是唯一的,所以一个身份证号就可以判断这个的所有信息,也就是引入身份证号这个属性之后,就会唯一确定一个人,这时身份证号对判断这个人的约束是最大,信息增益也就是最大。

2.决策树的构造

2.1熵的计算

数据集:

机器学习实战-决策树

根据表中的数据统计可知,在15个数据中,9个数据的结果为放贷,6个数据的结果为不放贷。所以数据集D的经验熵H(D)为:

机器学习实战-决策树

def calcShannonEnt(dataSet):     numEntires = len(dataSet)    #返回数据集的行数     labelCounts = {}    #保存每个标签(Label)出现次数的字典     for featVec in dataSet: #featVec代表一行一行的数据   #对每组特征向量进行统计         currentLabel = featVec[-1]  #取每一行的最后一列也即是否贷款的值         if currentLabel not in labelCounts.keys():    #如果标签(Label)没有放入统计次数的字典,添加进去             labelCounts[currentLabel] = 0#键对应的值设为零         labelCounts[currentLabel] += 1 #键对应的值加一     shannonEnt = 0.0                                #经验熵(香农熵)     for key in labelCounts:                            #计算香农熵         prob = float(labelCounts[key]) / numEntires    #选择该标签(Label)的概率         shannonEnt -= prob * log(prob, 2)            #利用公式计算     return shannonEnt  def createDataSet():     #年龄:0代表青年,1代表中年,2代表老年     #信贷情况:0代表一般,1代表好,2代表非常好     dataSet = [[0, 0, 0, 0, 'no'],  # 数据集                [0, 0, 0, 1, 'no'],                [0, 1, 0, 1, 'yes'],                [0, 1, 1, 0, 'yes'],                [0, 0, 0, 0, 'no'],                [1, 0, 0, 0, 'no'],                [1, 0, 0, 1, 'no'],                [1, 1, 1, 1, 'yes'],                [1, 0, 1, 2, 'yes'],                [1, 0, 1, 2, 'yes'],                [2, 0, 1, 2, 'yes'],                [2, 0, 1, 1, 'yes'],                [2, 1, 0, 1, 'yes'],                [2, 1, 0, 2, 'yes'],                [2, 0, 0, 0, 'no']]     labels = ['年龄', '有工作', '有自己的房子', '信贷情况']  # 特征标签     return dataSet, labels  # 返回数据集和分类属性  myDat,labels=createDataSet() print(myDat) print(calcShannonEnt(myDat)) 

测试结果:

机器学习实战-决策树

2.2划分数据集

2.2.1按照给定特征划分数据集

#三个输入参数:待划分的数据集、划分数据集的特征、需要返回的特征的值 def splitDataSet(dataSet, axis, value):     retDataSet = []                 #创建返回的数据集列表     for featVec in dataSet:             #遍历数据集         if featVec[axis] == value:             reducedFeatVec = featVec[:axis]    #去掉axis特征             reducedFeatVec.extend(featVec[axis+1:])     #将符合条件的添加到返回的数据集             retDataSet.append(reducedFeatVec)     return retDataSet        #返回划分后的数据集 

上面代码的解释,假设axis=0,value=1,表示的是在第一列年龄的属性中,找到值为1(也即为中年)的所有行,然后去掉每一行中第一列的数据(其实很多余,因为在算熵的时候只取最后一列的数据),然后每一行的剩余列的数据保存

以添加年龄之后算此时是否贷款的信息增益的方法如下图:

机器学习实战-决策树

2.2.2选择最好的数据集划分方式

代码实现:

def chooseBestFeatureToSplit(dataSet):     numFeatures = len(dataSet[0]) - 1    #特征数量     baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵     bestInfoGain = 0.0      #信息增益     bestFeature = -1       #最优特征的索引值     for i in range(numFeatures):   #遍历所有特征         #获取dataSet的第i个所有特征-第i列全部的值         featList = [example[i] for example in dataSet]         uniqueVals = set(featList)   #创建set集合{},元素不可重复         newEntropy = 0.0   #经验条件熵         for value in uniqueVals:  #计算信息增益             subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集             prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率如上图的p(youth),p(middle),p(old)的值             newEntropy += prob * calcShannonEnt(subDataSet)     #根据公式计算经验条件熵         infoGain = baseEntropy - newEntropy #信息增益=h(D)-h(D|A)         # print("第%d个特征的增益为%.3f" % (i, infoGain))            #打印每个特征的信息增益         if (infoGain > bestInfoGain): #取出信息增益的最大值                            #计算信息增益             bestInfoGain = infoGain                             #更新信息增益,找到最大的信息增益             bestFeature = i                                     #记录信息增益最大的特征的索引值     return bestFeature 

2.3递归构建决策树

#当所有的特征及属性都遍历完成之后任然不能确定是否贷款 #此时可根据classlist中是否贷款各自的数量,取最大票数的即可 def majorityCnt(classList):     classCount = {}     for vote in classList:                                        #统计classList中每个元素出现的次数         if vote not in classCount.keys():             classCount[vote] = 0         classCount[vote] += 1     sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) #根据字典的值降序排序     return sortedClassCount[0][0]                                #返回classList中出现次数最多的元素  #创建树的函数代码 def createTree(dataSet, labels, featLabels):     classList = [example[-1] for example in dataSet]#取分类标签(是否放贷:yes or no)     # print("classlist:")     # print(classList)     if classList.count(classList[0]) == len(classList):            #如果类别完全相同则停止继续划分         return classList[0]     if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的类标签         return majorityCnt(classList)     bestFeat = chooseBestFeatureToSplit(dataSet) #选择最优特征     bestFeatLabel = labels[bestFeat]#最优特征的标签     featLabels.append(bestFeatLabel)     myTree = {bestFeatLabel:{}}#根据最优特征的标签生成树     del(labels[bestFeat])    #删除已经使用特征标签     featValues = [example[bestFeat] for example in dataSet]  #得到训练集中所有最优特征的属性值     uniqueVals = set(featValues) #去掉重复的属性值     for value in uniqueVals:   #遍历特征,创建决策树。         myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)     return myTree 

递归函数的第一个停止条件是所有的
类标签完全相同,则直接返回该类标签。递归函数的第二个停止条件是使用完了所有特征,任然不能将数据集划分成仅包含唯一类别的分组 。由于第二个条件无法简单地返回唯一的类标 签,这里使用投票表决的函数挑选出现次数最多的类别作为返回值

运行结果

机器学习实战-决策树
由上面建立的决策树可知,首先判断你是否有房子,如果有就可以贷款给你,如果没有房子再看你是否有工作,如果既没有房子也没有工作,就不贷款给你,如果有没有房子,但有工作,也贷款给你

3.使用 Matplotlib 注解绘制树形图

使用Matplotlib的注解功能绘制树形图,它可以对文字着色并提供多种形状以供选择, 而且我们还可以反转箭头,将它指向文本框而不是数据点。

#获取决策树叶子结点的数目 def getNumLeafs(myTree):     numLeafs = 0 #初始化叶子     firstStr = next(iter(myTree)) #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]     secondDict = myTree[firstStr] #获取下一组字典     for key in secondDict.keys():         if type(secondDict[key]).__name__=='dict': #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点             numLeafs += getNumLeafs(secondDict[key])         else:   numLeafs +=1     return numLeafs  #获取决策树的层数 def getTreeDepth(myTree):     maxDepth = 0  #初始化决策树深度     firstStr = next(iter(myTree)) #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]     secondDict = myTree[firstStr] #获取下一个字典     for key in secondDict.keys():         if type(secondDict[key]).__name__=='dict': #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点             thisDepth = 1 + getTreeDepth(secondDict[key])         else:   thisDepth = 1         if thisDepth > maxDepth: maxDepth = thisDepth #更新层数     return maxDepth  #绘制结点 def plotNode(nodeTxt, centerPt, parentPt, nodeType):     arrow_args = dict(arrowstyle="<-")  #定义箭头格式     #下面的字体仅使用与Mac用户,如果您是Windows用户请修改为font = FontProperties(fname=r"c:windowsfontssimsun.ttc", size=14)     font = FontProperties(fname=r'/System/Library/Fonts/Hiragino Sans GB.ttc', size=14)        #设置中文字体     createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',    #绘制结点         xytext=centerPt, textcoords='axes fraction',         va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, fontproperties=font)  #标注有向边属性值 def plotMidText(cntrPt, parentPt, txtString):     xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]                                            #计算标注位置     yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]     createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)  #绘制决策树 def plotTree(myTree, parentPt, nodeTxt):     decisionNode = dict(boxstyle="sawtooth", fc="0.8")                                        #设置结点格式     leafNode = dict(boxstyle="round4", fc="0.8")                                            #设置叶结点格式     numLeafs = getNumLeafs(myTree)                                                          #获取决策树叶结点数目,决定了树的宽度     depth = getTreeDepth(myTree)                                                            #获取决策树层数     firstStr = next(iter(myTree))                                                            #下个字典     cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    #中心位置     plotMidText(cntrPt, parentPt, nodeTxt)                                                    #标注有向边属性值     plotNode(firstStr, cntrPt, parentPt, decisionNode)                                        #绘制结点     secondDict = myTree[firstStr]                                                            #下一个字典,也就是继续绘制子结点     plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD                                        #y偏移     for key in secondDict.keys():         if type(secondDict[key]).__name__=='dict':                                            #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点             plotTree(secondDict[key],cntrPt,str(key))                                        #不是叶结点,递归调用继续绘制         else:                                                                                #如果是叶结点,绘制叶结点,并标注有向边属性值             plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW             plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)             plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))     plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD  #创建绘制面板 def createPlot(inTree):     fig = plt.figure(1, facecolor='white') #创建fig     fig.clf()   #清空fig     axprops = dict(xticks=[], yticks=[])     createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #去掉x、y轴     plotTree.totalW = float(getNumLeafs(inTree)) #获取决策树叶结点数目     plotTree.totalD = float(getTreeDepth(inTree)) #获取决策树层数     plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0; #x偏移     plotTree(inTree, (0.5,1.0), '')  #绘制决策树     plt.show()  #显示绘制结果  if __name__ == '__main__':     dataSet, labels = createDataSet()     featLabels = []     myTree = createTree(dataSet, labels, featLabels)     print(myTree)     createPlot(myTree) 

运行遇到的错误:

  • 1.AttributeError:module 'backend_interagg' has no attribute 'FigureCanvas'
    解决方法:
    在pycharm中打开" File --> Settings --> Tools --> Python Scientific ",将"Show plots in toolwindow"去掉勾选,并应用。

  • 2.'Annotation' object has no property 'FontProperties'
    解决方法:
    找了一会发现是字体问题,因为我的电脑是Mac系统,在字体设置与Windows有些区别,读者可以根据如下步骤修改:首先在终端输入open /System/Library/Fonts然后找到一种字体,并复制其路径,另外在调用的时候FontProperties要写成小写,否则也会报错,如下图

    机器学习实战-决策树

最终问题解决之后,运行结果如下图

机器学习实战-决策树

发表评论

相关文章