1.决策树的构造
1.1优缺点
优点:
-
计算复杂度不高:以ID3为例,每次运算都是基于某一列特征,特征计算完后,下次计算不考虑该最有特征,并且通过适当剪枝可以简化复杂度
-
输出结果易于理解:因为输出的是一个树的结构,树的走向一目了然
-
对中间值的缺失不敏感
-
可以处理不相关特 征数据:是基于每列特征来计算,不考虑特征之间的依赖关系
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
1.2信息熵
主要用来度量信息的混乱程度,信息越混乱,说明能够包含的信息量越多,则熵越大。反之若信息越有序说明包含的信息量越少,则熵越小。
1.3信息增益
标准的说法就是:一个随机变量的引入导致了另一个随机变量的混乱性变化(约束),如果约束越大,信息增益就越大。举个通俗易懂的例子就是:比如你去银行贷款,如果你自己的个人信息你对贷款员什么都不说,那贷款员是不是就很不确定是否贷款给你,如果你只说了你的薪资,那较之前相比,贷款员是否给你贷款是不是就多了一种判断的依据,也就是说,你告诉贷款员你的个人信息越多,贷款员是否给你贷款就越确定,此时的信息增益也就是最大。在举一个例子:了解一个人的信息,如果给一个身份证号,由于每个人的身份证号都是唯一的,所以一个身份证号就可以判断这个的所有信息,也就是引入身份证号这个属性之后,就会唯一确定一个人,这时身份证号对判断这个人的约束是最大,信息增益也就是最大。
2.决策树的构造
2.1熵的计算
数据集:
根据表中的数据统计可知,在15个数据中,9个数据的结果为放贷,6个数据的结果为不放贷。所以数据集D的经验熵H(D)为:
def calcShannonEnt(dataSet): numEntires = len(dataSet) #返回数据集的行数 labelCounts = {} #保存每个标签(Label)出现次数的字典 for featVec in dataSet: #featVec代表一行一行的数据 #对每组特征向量进行统计 currentLabel = featVec[-1] #取每一行的最后一列也即是否贷款的值 if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去 labelCounts[currentLabel] = 0#键对应的值设为零 labelCounts[currentLabel] += 1 #键对应的值加一 shannonEnt = 0.0 #经验熵(香农熵) for key in labelCounts: #计算香农熵 prob = float(labelCounts[key]) / numEntires #选择该标签(Label)的概率 shannonEnt -= prob * log(prob, 2) #利用公式计算 return shannonEnt def createDataSet(): #年龄:0代表青年,1代表中年,2代表老年 #信贷情况:0代表一般,1代表好,2代表非常好 dataSet = [[0, 0, 0, 0, 'no'], # 数据集 [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], [0, 0, 0, 0, 'no'], [1, 0, 0, 0, 'no'], [1, 0, 0, 1, 'no'], [1, 1, 1, 1, 'yes'], [1, 0, 1, 2, 'yes'], [1, 0, 1, 2, 'yes'], [2, 0, 1, 2, 'yes'], [2, 0, 1, 1, 'yes'], [2, 1, 0, 1, 'yes'], [2, 1, 0, 2, 'yes'], [2, 0, 0, 0, 'no']] labels = ['年龄', '有工作', '有自己的房子', '信贷情况'] # 特征标签 return dataSet, labels # 返回数据集和分类属性 myDat,labels=createDataSet() print(myDat) print(calcShannonEnt(myDat))
测试结果:
2.2划分数据集
2.2.1按照给定特征划分数据集
#三个输入参数:待划分的数据集、划分数据集的特征、需要返回的特征的值 def splitDataSet(dataSet, axis, value): retDataSet = [] #创建返回的数据集列表 for featVec in dataSet: #遍历数据集 if featVec[axis] == value: reducedFeatVec = featVec[:axis] #去掉axis特征 reducedFeatVec.extend(featVec[axis+1:]) #将符合条件的添加到返回的数据集 retDataSet.append(reducedFeatVec) return retDataSet #返回划分后的数据集
上面代码的解释,假设axis=0,value=1,表示的是在第一列年龄的属性中,找到值为1(也即为中年)的所有行,然后去掉每一行中第一列的数据(其实很多余,因为在算熵的时候只取最后一列的数据),然后每一行的剩余列的数据保存
以添加年龄之后算此时是否贷款的信息增益的方法如下图:
2.2.2选择最好的数据集划分方式
代码实现:
def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #特征数量 baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵 bestInfoGain = 0.0 #信息增益 bestFeature = -1 #最优特征的索引值 for i in range(numFeatures): #遍历所有特征 #获取dataSet的第i个所有特征-第i列全部的值 featList = [example[i] for example in dataSet] uniqueVals = set(featList) #创建set集合{},元素不可重复 newEntropy = 0.0 #经验条件熵 for value in uniqueVals: #计算信息增益 subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集 prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率如上图的p(youth),p(middle),p(old)的值 newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵 infoGain = baseEntropy - newEntropy #信息增益=h(D)-h(D|A) # print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益 if (infoGain > bestInfoGain): #取出信息增益的最大值 #计算信息增益 bestInfoGain = infoGain #更新信息增益,找到最大的信息增益 bestFeature = i #记录信息增益最大的特征的索引值 return bestFeature
2.3递归构建决策树
#当所有的特征及属性都遍历完成之后任然不能确定是否贷款 #此时可根据classlist中是否贷款各自的数量,取最大票数的即可 def majorityCnt(classList): classCount = {} for vote in classList: #统计classList中每个元素出现的次数 if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) #根据字典的值降序排序 return sortedClassCount[0][0] #返回classList中出现次数最多的元素 #创建树的函数代码 def createTree(dataSet, labels, featLabels): classList = [example[-1] for example in dataSet]#取分类标签(是否放贷:yes or no) # print("classlist:") # print(classList) if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止继续划分 return classList[0] if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的类标签 return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) #选择最优特征 bestFeatLabel = labels[bestFeat]#最优特征的标签 featLabels.append(bestFeatLabel) myTree = {bestFeatLabel:{}}#根据最优特征的标签生成树 del(labels[bestFeat]) #删除已经使用特征标签 featValues = [example[bestFeat] for example in dataSet] #得到训练集中所有最优特征的属性值 uniqueVals = set(featValues) #去掉重复的属性值 for value in uniqueVals: #遍历特征,创建决策树。 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels) return myTree
递归函数的第一个停止条件是所有的
类标签完全相同,则直接返回该类标签。递归函数的第二个停止条件是使用完了所有特征,任然不能将数据集划分成仅包含唯一类别的分组 。由于第二个条件无法简单地返回唯一的类标 签,这里使用投票表决的函数挑选出现次数最多的类别作为返回值
运行结果
由上面建立的决策树可知,首先判断你是否有房子,如果有就可以贷款给你,如果没有房子再看你是否有工作,如果既没有房子也没有工作,就不贷款给你,如果有没有房子,但有工作,也贷款给你
3.使用 Matplotlib 注解绘制树形图
使用Matplotlib的注解功能绘制树形图,它可以对文字着色并提供多种形状以供选择, 而且我们还可以反转箭头,将它指向文本框而不是数据点。
#获取决策树叶子结点的数目 def getNumLeafs(myTree): numLeafs = 0 #初始化叶子 firstStr = next(iter(myTree)) #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0] secondDict = myTree[firstStr] #获取下一组字典 for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点 numLeafs += getNumLeafs(secondDict[key]) else: numLeafs +=1 return numLeafs #获取决策树的层数 def getTreeDepth(myTree): maxDepth = 0 #初始化决策树深度 firstStr = next(iter(myTree)) #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0] secondDict = myTree[firstStr] #获取下一个字典 for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点 thisDepth = 1 + getTreeDepth(secondDict[key]) else: thisDepth = 1 if thisDepth > maxDepth: maxDepth = thisDepth #更新层数 return maxDepth #绘制结点 def plotNode(nodeTxt, centerPt, parentPt, nodeType): arrow_args = dict(arrowstyle="<-") #定义箭头格式 #下面的字体仅使用与Mac用户,如果您是Windows用户请修改为font = FontProperties(fname=r"c:windowsfontssimsun.ttc", size=14) font = FontProperties(fname=r'/System/Library/Fonts/Hiragino Sans GB.ttc', size=14) #设置中文字体 createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', #绘制结点 xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, fontproperties=font) #标注有向边属性值 def plotMidText(cntrPt, parentPt, txtString): xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0] #计算标注位置 yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30) #绘制决策树 def plotTree(myTree, parentPt, nodeTxt): decisionNode = dict(boxstyle="sawtooth", fc="0.8") #设置结点格式 leafNode = dict(boxstyle="round4", fc="0.8") #设置叶结点格式 numLeafs = getNumLeafs(myTree) #获取决策树叶结点数目,决定了树的宽度 depth = getTreeDepth(myTree) #获取决策树层数 firstStr = next(iter(myTree)) #下个字典 cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff) #中心位置 plotMidText(cntrPt, parentPt, nodeTxt) #标注有向边属性值 plotNode(firstStr, cntrPt, parentPt, decisionNode) #绘制结点 secondDict = myTree[firstStr] #下一个字典,也就是继续绘制子结点 plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD #y偏移 for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点 plotTree(secondDict[key],cntrPt,str(key)) #不是叶结点,递归调用继续绘制 else: #如果是叶结点,绘制叶结点,并标注有向边属性值 plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode) plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD #创建绘制面板 def createPlot(inTree): fig = plt.figure(1, facecolor='white') #创建fig fig.clf() #清空fig axprops = dict(xticks=[], yticks=[]) createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #去掉x、y轴 plotTree.totalW = float(getNumLeafs(inTree)) #获取决策树叶结点数目 plotTree.totalD = float(getTreeDepth(inTree)) #获取决策树层数 plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0; #x偏移 plotTree(inTree, (0.5,1.0), '') #绘制决策树 plt.show() #显示绘制结果 if __name__ == '__main__': dataSet, labels = createDataSet() featLabels = [] myTree = createTree(dataSet, labels, featLabels) print(myTree) createPlot(myTree)
运行遇到的错误:
-
1.AttributeError:module 'backend_interagg' has no attribute 'FigureCanvas'
解决方法:
在pycharm中打开" File --> Settings --> Tools --> Python Scientific ",将"Show plots in toolwindow"去掉勾选,并应用。 -
2.'Annotation' object has no property 'FontProperties'
解决方法:
找了一会发现是字体问题,因为我的电脑是Mac系统,在字体设置与Windows有些区别,读者可以根据如下步骤修改:首先在终端输入open /System/Library/Fonts然后找到一种字体,并复制其路径,另外在调用的时候FontProperties要写成小写,否则也会报错,如下图
最终问题解决之后,运行结果如下图