【OpenGL ES】在Android上手撕一个mini版的渲染框架

1 前言

1.1 开发该框架的动机

​ OpenGL ES 是一个渲染指令接口集合,每渲染一帧图像都是一系列渲染指令的排列组合。常用的渲染指令约有 70 个,记住这些渲染指令及其排列组合方式,是一件痛苦的事情。另外,在图形开发中,经常因为功耗、丢帧等问题需要性能优化,如何从框架层面进行性能优化是一件有挑战的问题。

​ 基于上述原因,笔者手撕了一个 nimi 版的渲染框架,将这些常用的渲染指令有条理地封装、组织、归类,方便愉快并高效地进行 OpenGL ES 渲染开发。笔者在 OpenGL ES 领域从业也有些时日,对现有碎片化的知识进行归纳凝练,形成系统的认知,是件势在必行的事。

1.2 为什么选择 native

​ 之所以选择在 native 中开发该渲染框架,是为了使该框架具有更好的跨平台特性和渲染效率。目前大多数平台的 OpenGL ES API 基于 C++ 实现,因此只需更改少量代码就可以将该框架迁移到其他平台上;另外,C++ 代码相较于 Java 等代码具有更高的执行效率。Windows 上的实现详见 → 在Windows上手撕一个mini版的渲染框架

1.3 一个 mini 版的渲染框架应该具备哪些能力

​ 一个 mini 版的渲染框架需要对 OpenGL ES 的常用指令进行归类(如下图),封装 EGL、error check、Shader Program、Mesh、VAO、VBO、IBO、Texture、FBO 等类,方便开发者快速开发渲染程序,将更多的注意力聚焦在业务上,而不是如何去组织 OpenGL ES 指令上。

【OpenGL ES】在Android上手撕一个mini版的渲染框架

1.4 为什么强调 mini 版渲染框架

​ 从渲染指令的角度来看,OpenGL ES 3.0 约有 300 个渲染指令,本文框架只封装其中最常用的 70 个,指令覆盖程度仍有较大提升空间。

​ 从功能的角度来看,笔者深知一个成熟完备的渲染框架应该具备相机、光源、光照模型(Lambert、Phong、PBR 等)、阴影、射线拾取、重力、碰撞检测、粒子系统等功能。

​ 鉴于上述原因,笔者审慎地保留了 "mini" 前缀。

1.5 本框架的优势

​ 本框架具有以下优势。

  • 封装友好:对常用的 EGL 和 GL 指令(约 70 个)进行封装,提供了 EGL 环境搭建、着色器程序生成、网格构建、纹理贴图、离屏渲染、异常检测等基础能力,方便开发者快速开发渲染程序,将精力从繁杂的渲染指令中解放出来,将更多的注意力聚焦到业务上。
  • 代码规整:框架中多处设计了 bind 和 unbind 接口,用于绑定和解绑 OpenGL ES 状态机相关 “插槽”,如:VBO、IBO、VAO 中都设计了 bind 和 unbind 接口,ShaderProgram、Texture、FBO、TextureAction 中都设计了 bind 接口;另外,在 FBO 中设计了 begin 和 end 接口,很直观地告诉用户夹在这中间的内容将渲染到 FBO。接口规整简洁,方便用户记忆。
  • 易于扩展:定义了 TextureAction 接口,并提供 bind 函数,GLTexture、FBO 都继承了 TextureAction,用户自定义的渲染器或特效类也可以继承 TextureAction,将它们统一视为纹理活动(可绑定),这在特效叠加(或后处理)中非常有用,方便管理多渲染目标图层,易于扩展。
  • 性能高效:封装了 VBO、IBO、VAO,用于缓存顶点数据、索引、格式等信息到显存,减少 CPU 到 GPU 的数据传输,提高渲染效率;缓存了 attribute 和 uniform 变量的 location,避免 CPU 频繁向 GPU 查询 location,进一步提高渲染效率;基于 C++ 语言实现渲染框架,代码执行效率较高。
  • 跨平台:基于 C++ 语言实现,具有更好的跨平台特性;封装了 core_lib,使得平台相关头文件可以轻松替换;封装了 Application,使得平台相关 api 可以轻松替换。
  • 方便调试:设计了 EGL_CALL 和 GL_CALL 两个宏,对每个 EGL 和 GL 指令进行异常检测,方便调试渲染指令,并且通过预编译宏 DEBUG 开关动态控制是否生成异常检测的代码,Release 版本会自动屏蔽异常检测代码,避免带来额外功耗。

2 渲染框架

​ 经过深思熟虑,笔者给该渲染框架命名为 glcore,命名空间也是 glcore。本文完整资源(包含 glcore 框架和第 4 节的应用)详见 → 【OpenGL ES】一个mini版的Android native渲染框架 。Windows 版本的 glcore 实现详见 → 在Windows上手撕一个mini版的渲染框架

2.1 框架结构

【OpenGL ES】在Android上手撕一个mini版的渲染框架

2.2 CMakeLists

​ CMakeLists.txt

# 设置库名 set(LIB_NAME "glcore")  # 递归添加源文件列表 file(GLOB_RECURSE GL_CORE_SOURCES src *.cpp)  # 添加预构建库 add_library(${LIB_NAME} ${GL_CORE_SOURCES})  # 将当前目录设为公共头文件目录 (任何链接glcore库的目标都能自动获得这个头文件路径) target_include_directories(${LIB_NAME} PUBLIC .)  # 添加链接的三方库文件 target_link_libraries(${LIB_NAME} PRIVATE         android         log         EGL         GLESv3) 

2.3 核心头文件

​ 核心头文件分为对内和对外的,即内部依赖 core_lib,外部开放 core。

​ core_lib.h

#pragma once  /**  * glcore 依赖的核心 GL 库, 便于将 glcore 移植到其他平台  * Android: EGL + GLESv3  * Windows: glfw / freeglut + glad / glew  *  * @author little fat sheep  */  #include <EGL/egl.h> #include <GLES3/gl3.h> 

​ 之所以要单独拎出 core_lib.h,是为了方便将该框架迁移到其他平台,如 Windows 上依赖的三方渲染库是 glfw / freeglut + glad / glew,如果不抽出 core_lib.h,就需要将很多地方的 egl.h + gl3.h 改为 glfw3.h / freeglut.h + glad.h / glew.h,工作量大,也容易漏改。

​ core.h

#pragma once  /**  * glcore核心头文件  * 该头文件是留给外部使用的, glcore内部不能使用, 避免自己包含自己  * @author little fat sheep  */  // OpenGL ES API #include "core_lib.h"  // glcore 核心头文件 #include "application.h" #include "elg_surface_view.h" #include "format.h" #include "frame_buffer_object.h" #include "gl_inspector.h" #include "gl_texture.h" #include "mesh.h" #include "mesh_utils.h" #include "shader_program.h" #include "texture_action.h" #include "vertex_attribute.h" 

​ core.h 只提供给外部使用,方便外部只需要包含一个头文件,就能获取 glcore 的基础能力。

2.4 Application

​ Application 主要用于管理全局环境,使用单例模式,方便获取一些全局的变量。它也是 glcore 中唯一一个依赖平台相关的接口(除日志 log 接口外),如:jniEnv、context、m_window 都是 Android 特有的,如果将 glcore 迁移到 Windows 中,这些变量全都要替换或删除,将这些平台相关变量都集中在 Application 中,迁移平台时修改起来也比较容易,避免太分散容易漏掉。

​ application.h

#pragma once  #include <android/native_window.h> #include <jni.h>  #define app Application::getInstance()  namespace glcore { /**  * 应用程序, 存储全局的参数, 便于访问  * @author little fat sheep  */ class Application { private:     static Application* sInstance;  public:     JNIEnv* jniEnv = nullptr;     jobject context = nullptr;     int width = 0;     int height = 0;     float aspect = 1.0f;  private:     ANativeWindow* m_window = nullptr;  public:     static Application* getInstance();     ~Application();     void resize(int width, int height);     ANativeWindow* getWindow() { return m_window; }     void setWindow(ANativeWindow* window);     void releaseWindow();  private:     Application() {}; }; } // namespace glcore 

​ application.cpp

#include "glcore/application.h"  namespace glcore { Application* Application::sInstance = nullptr;  Application *Application::getInstance() {     if (sInstance == nullptr)     {         sInstance = new Application();     }     return sInstance; }  Application::~Application() {     jniEnv->DeleteGlobalRef(context);     releaseWindow(); }  void Application::resize(int width, int height) {     this->width = width;     this->height = height;     this->aspect = (float) width / (float) height; }  void Application::setWindow(ANativeWindow* window) {     m_window = window;     resize(ANativeWindow_getWidth(window), ANativeWindow_getHeight(window)); }  void Application::releaseWindow() {     if (m_window)     {         ANativeWindow_release(m_window);         m_window = nullptr;     } } } // namespace glcore 

2.5 GLInspector

​ GLInspector 主要用于异常信息检测,另外设计了 EGL_CALL 和 GL_CALL 两个宏,分别对 EGL 和 GL 指令进行装饰。如果定义了 DEBUG 宏,就会对每个 EGL 和 GL 指令进行异常检测,方便调试代码;如果未定义了 DEBUG 宏,就不会进行异常检测。

​ 用户可以在 CMakeLists.txt 中添加预编译宏 DEBUG,这样就可以根据 Release 和 Debug 版本自动构建不同的版本。

if (CMAKE_BUILD_TYPE STREQUAL "Debug")     # 添加预编译宏     add_definitions(-DDEBUG) endif () 

​ gl_inspector.h

#pragma once  #include "core_lib.h"  #ifdef DEBUG #define EGL_CALL(func) func;GLInspector::checkEGLError(); #define GL_CALL(func) func;GLInspector::checkGLError(); #else #define EGL_CALL(func) func; #define GL_CALL(func) func; #endif  namespace glcore { /**  * OpenGL ES命令报错监视器  * @author little fat sheep  */ class GLInspector { public:     static void checkEGLError(const char* tag); // 检查EGL报错信息     static void checkEGLError(); // 通用检查EGL错误     static void printShaderInfoLog(GLuint shader, const char* tag); // 打印Shader错误日志     static void printProgramInfoLog(GLuint program, const char* tag); // 打印Program错误日志     static void checkGLError(const char* tag); // 检查GL报错信息     static void checkGLError(); // 通用检查GL报错信息 }; } // namespace glcore 

​ gl_inspector.cpp

#include <android/log.h> #include <assert.h> #include <string>  #include "glcore/gl_inspector.h"  #define LOG_TAG "Native: GLInspector" #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)  using namespace std;  namespace glcore { void GLInspector::checkEGLError(const char *tag) {     int error = eglGetError();     if (error != EGL_SUCCESS) {         LOGE("%s failed: 0x%x", tag, error);     } }  void GLInspector::checkEGLError() {     GLenum errorCode = eglGetError();     if (errorCode != EGL_SUCCESS) {         string error;         switch (errorCode)         {             case EGL_BAD_DISPLAY:                 error = "EGL_BAD_DISPLAY";                 break;             case EGL_NOT_INITIALIZED:                 error = "EGL_NOT_INITIALIZED";                 break;             case EGL_BAD_CONFIG:                 error = "EGL_BAD_CONFIG";                 break;             case EGL_BAD_CONTEXT:                 error = "EGL_BAD_CONTEXT";                 break;             case EGL_BAD_NATIVE_WINDOW:                 error = "EGL_BAD_NATIVE_WINDOW";                 break;             case EGL_BAD_SURFACE:                 error = "EGL_BAD_SURFACE";                 break;             case EGL_BAD_CURRENT_SURFACE:                 error = "EGL_BAD_CURRENT_SURFACE";                 break;             case EGL_BAD_ACCESS:                 error = "EGL_BAD_ACCESS";                 break;             case EGL_BAD_ALLOC:                 error = "EGL_BAD_ALLOC";                 break;             case EGL_BAD_ATTRIBUTE:                 error = "EGL_BAD_ATTRIBUTE";                 break;             case EGL_BAD_PARAMETER:                 error = "EGL_BAD_PARAMETER";                 break;             case EGL_BAD_NATIVE_PIXMAP:                 error = "EGL_BAD_NATIVE_PIXMAP";                 break;             case EGL_BAD_MATCH:                 error = "EGL_BAD_MATCH";                 break;             case EGL_CONTEXT_LOST:                 error = "EGL_CONTEXT_LOST";                 break;             default:                 error = "UNKNOW";                 break;         }         LOGE("checkEGLError failed: %s, 0x%x", error.c_str(), errorCode);         assert(false);     } }  void GLInspector::printShaderInfoLog(GLuint shader, const char* tag) {     char infoLog[512];     glGetShaderInfoLog(shader, 512, nullptr, infoLog);     LOGE("%s failed: %s", tag, infoLog); }  void GLInspector::printProgramInfoLog(GLuint program, const char* tag) {     char infoLog[512];     glGetProgramInfoLog(program, 512, nullptr, infoLog);     LOGE("%s failed: %s", tag, infoLog); }  void GLInspector::checkGLError(const char *tag) {     GLenum error = glGetError();     if(error != GL_NO_ERROR) {         LOGE("%s failed: 0x%x", tag, error);     } }  void GLInspector::checkGLError() {     GLenum errorCode = glGetError();     if (errorCode != GL_NO_ERROR) {         string error;         switch (errorCode)         {             case GL_INVALID_ENUM:                 error = "GL_INVALID_ENUM";                 break;             case GL_INVALID_VALUE:                 error = "GL_INVALID_VALUE";                 break;             case GL_INVALID_OPERATION:                 error = "GL_INVALID_OPERATION";                 break;             case GL_INVALID_INDEX:                 error = "GL_INVALID_INDEX";                 break;             case GL_INVALID_FRAMEBUFFER_OPERATION:                 error = "GL_INVALID_FRAMEBUFFER_OPERATION";                 break;             case GL_OUT_OF_MEMORY:                 error = "GL_OUT_OF_MEMORY";                 break;             default:                 error = "UNKNOW";                 break;         }         LOGE("checkGLError failed: %s, 0x%x", error.c_str(), errorCode);         assert(false);     } } } // namespace glcore 

2.6 EGLSurfaceView

​ EGLSurfaceView 主要承载了 EGL 环境搭建。EGL 详细介绍见 → 【OpenGL ES】EGL+FBO离屏渲染

​ elg_surface_view.h

#include <android/log.h>  #include "glcore/application.h" #include "glcore/elg_surface_view.h" #include "glcore/gl_inspector.h"  #define LOG_TAG "Native: EGLSurfaceView" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  namespace glcore { EGLSurfaceView::EGLSurfaceView() {     LOGI("init");     createDisplay();     createConfig();     createContext(); }  EGLSurfaceView::~EGLSurfaceView() {     LOGI("destroy");     if (m_renderer)     {         delete m_renderer;         m_renderer = nullptr;     }     if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)     {         // 与显示设备解绑         EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));         // 销毁 EGLSurface         if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)         {             EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));             delete &m_eglSurface;         }         // 销毁 EGLContext         if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)         {             EGL_CALL(eglDestroyContext(m_eglDisplay, m_eglContext));             delete &m_eglContext;         }         // 销毁 EGLDisplay (显示设备)         EGL_CALL(eglTerminate(m_eglDisplay));         delete &m_eglDisplay;     }     delete app; }  void EGLSurfaceView::setRenderer(Renderer *renderer) {     LOGI("setRenderer");     m_renderer = renderer; }  bool EGLSurfaceView::surfaceCreated() {     LOGI("createSurface");     createSurface();     makeCurrent();     if (m_renderer && m_firstCreateSurface)     {         m_renderer->onSurfaceCreated();         m_firstCreateSurface = false;     }     return true; }  void EGLSurfaceView::surfaceChanged(int width, int height) {     LOGI("surfaceChanged, width: %d, height: %d", width, height);     app->resize(width, height);     if (m_renderer)     {         m_renderer->onSurfaceChanged(width, height);     } }  void EGLSurfaceView::drawFrame() {     if (!m_eglSurface || m_eglSurface == EGL_NO_SURFACE || !m_renderer)     {         return;     }     m_renderer->onDrawFrame();     EGL_CALL(eglSwapBuffers(m_eglDisplay, m_eglSurface)); }  void EGLSurfaceView::surfaceDestroy() {     LOGI("surfaceDestroy");     if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)     {         // 与显示设备解绑         EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));         // 销毁 EGLSurface         if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)         {             EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));             m_eglSurface = nullptr;         }     }     app->releaseWindow(); }  // 1.创建EGLDisplay void EGLSurfaceView::createDisplay() {     EGL_CALL(m_eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY));     EGL_CALL(eglInitialize(m_eglDisplay, nullptr, nullptr)); }  // 2.创建EGLConfig void EGLSurfaceView::createConfig() {     if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)     {         const EGLint configAttrs[] = {                 EGL_RED_SIZE, 8,                 EGL_GREEN_SIZE, 8,                 EGL_BLUE_SIZE, 8,                 EGL_ALPHA_SIZE, 8,                 EGL_DEPTH_SIZE, 8,                 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT,                 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,                 EGL_NONE         };         EGLint numConfigs;         EGL_CALL(eglChooseConfig(m_eglDisplay, configAttrs, &m_eglConfig, 1, &numConfigs));     } }  // 3.创建EGLContext void EGLSurfaceView::createContext() {     if (m_eglConfig)     {         const EGLint contextAttrs[] = {                 EGL_CONTEXT_CLIENT_VERSION, 3,                 EGL_NONE         };         EGL_CALL(m_eglContext = eglCreateContext(m_eglDisplay, m_eglConfig, EGL_NO_CONTEXT, contextAttrs));     } }  // 4.创建EGLSurface void EGLSurfaceView::createSurface() {     if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)     {         EGL_CALL(m_eglSurface = eglCreateWindowSurface(m_eglDisplay, m_eglConfig, app->getWindow(), nullptr));     } }  // 5.绑定EGLSurface和EGLContext到显示设备(EGLDisplay) void EGLSurfaceView::makeCurrent() {     if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)     {         EGL_CALL(eglMakeCurrent(m_eglDisplay, m_eglSurface, m_eglSurface, m_eglContext));     } } } // namespace glcore 

​ elg_surface_view.cpp

#include <android/log.h>  #include "glcore/application.h" #include "glcore/elg_surface_view.h" #include "glcore/gl_inspector.h"  #define LOG_TAG "Native: EGLSurfaceView" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  namespace glcore { EGLSurfaceView::EGLSurfaceView() {     LOGI("init");     createDisplay();     createConfig();     createContext(); }  EGLSurfaceView::~EGLSurfaceView() {     LOGI("destroy");     if (m_renderer)     {         delete m_renderer;         m_renderer = nullptr;     }     if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)     {         // 与显示设备解绑         EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));         // 销毁 EGLSurface         if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)         {             EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));             //GLInspector::checkEGLConfig("eglDestroySurface");             delete &m_eglSurface;         }         // 销毁 EGLContext         if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)         {             EGL_CALL(eglDestroyContext(m_eglDisplay, m_eglContext));             //GLInspector::checkEGLConfig("eglDestroyContext");             delete &m_eglContext;         }         // 销毁 EGLDisplay (显示设备)         EGL_CALL(eglTerminate(m_eglDisplay));         //GLInspector::checkEGLConfig("eglTerminate");         delete &m_eglDisplay;     }     delete app; }  void EGLSurfaceView::setRenderer(Renderer *renderer) {     LOGI("setRenderer");     m_renderer = renderer; }  bool EGLSurfaceView::surfaceCreated() {     LOGI("createSurface");     createSurface();     makeCurrent();     if (m_renderer && m_firstCreateSurface)     {         m_renderer->onSurfaceCreated();         m_firstCreateSurface = false;     }     return true; }  void EGLSurfaceView::surfaceChanged(int width, int height) {     LOGI("surfaceChanged, width: %d, height: %d", width, height);     app->resize(width, height);     if (m_renderer)     {         m_renderer->onSurfaceChanged(width, height);     } }  void EGLSurfaceView::drawFrame() {     if (!m_eglSurface || m_eglSurface == EGL_NO_SURFACE || !m_renderer)     {         return;     }     m_renderer->onDrawFrame();     EGL_CALL(eglSwapBuffers(m_eglDisplay, m_eglSurface));     //GLInspector::checkEGLConfig("eglSwapBuffers"); }  void EGLSurfaceView::surfaceDestroy() {     LOGI("surfaceDestroy");     if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)     {         // 与显示设备解绑         EGL_CALL(eglMakeCurrent(m_eglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));         // 销毁 EGLSurface         if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)         {             EGL_CALL(eglDestroySurface(m_eglDisplay, m_eglSurface));             //GLInspector::checkEGLConfig("eglDestroySurface");             m_eglSurface = nullptr;         }     }     app->releaseWindow(); }  // 1.创建EGLDisplay void EGLSurfaceView::createDisplay() {     EGL_CALL(m_eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY));     EGL_CALL(eglInitialize(m_eglDisplay, nullptr, nullptr));     //GLInspector::checkEGLConfig("eglInitialize"); }  // 2.创建EGLConfig void EGLSurfaceView::createConfig() {     if (m_eglDisplay && m_eglDisplay != EGL_NO_DISPLAY)     {         const EGLint configAttrs[] = {                 EGL_RED_SIZE, 8,                 EGL_GREEN_SIZE, 8,                 EGL_BLUE_SIZE, 8,                 EGL_ALPHA_SIZE, 8,                 EGL_DEPTH_SIZE, 8,                 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT,                 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,                 EGL_NONE         };         EGLint numConfigs;         EGL_CALL(eglChooseConfig(m_eglDisplay, configAttrs, &m_eglConfig, 1, &numConfigs));         //GLInspector::checkEGLConfig("eglChooseConfig");     } }  // 3.创建EGLContext void EGLSurfaceView::createContext() {     if (m_eglConfig)     {         const EGLint contextAttrs[] = {                 EGL_CONTEXT_CLIENT_VERSION, 3,                 EGL_NONE         };         EGL_CALL(m_eglContext = eglCreateContext(m_eglDisplay, m_eglConfig, EGL_NO_CONTEXT, contextAttrs));         //GLInspector::checkEGLConfig("eglCreateContext");     } }  // 4.创建EGLSurface void EGLSurfaceView::createSurface() {     if (m_eglContext && m_eglContext != EGL_NO_CONTEXT)     {         EGL_CALL(m_eglSurface = eglCreateWindowSurface(m_eglDisplay, m_eglConfig, app->getWindow(), nullptr));         //GLInspector::checkEGLConfig("eglCreateWindowSurface");     } }  // 5.绑定EGLSurface和EGLContext到显示设备(EGLDisplay) void EGLSurfaceView::makeCurrent() {     if (m_eglSurface && m_eglSurface != EGL_NO_SURFACE)     {         EGL_CALL(eglMakeCurrent(m_eglDisplay, m_eglSurface, m_eglSurface, m_eglContext));         //GLInspector::checkEGLConfig("eglMakeCurrent");     } } } // namespace glcore 

2.7 ShaderProgram

​ ShaderProgram 主要用于编译 Shader、链接 Program、设置 attribute 属性、更新 uniform 属性。

​ glGetAttribLocation、glGetUniformLocation 两个接口需要 CPU 向 GPU 查询 location 信息,并且会频繁调用,为提高性能,笔者设计了 m_attributes 和 m_uniforms 两个 map 存储 name 到 location 的映射,方便快速获取 location,避免 CPU 频繁与 GPU 交互,以提高渲染性能。

​ shader_program.h

#pragma once  #include <map>  #include "core_lib.h"  using namespace std;  namespace glcore { /**  * 着色器程序  * @author little fat sheep  */ class ShaderProgram { public:     static constexpr char* ATTRIBUTE_POSITION = "a_position"; // 着色器中位置属性名     static constexpr char* ATTRIBUTE_NORMAL = "a_normal"; // 着色器中位法线性名     static constexpr char* ATTRIBUTE_COLOR = "a_color"; // 着色器中颜色属性名     static constexpr char* ATTRIBUTE_TEXCOORD = "a_texCoord"; // 着色器中纹理坐标属性名     static constexpr char* ATTRIBUTE_TANGENT = "a_tangent"; // 着色器中切线属性名     static constexpr char* ATTRIBUTE_BINORMAL = "a_binormal"; // 着色器中副切线属性名      static constexpr char* UNIFORM_TEXTURE = "u_texture"; // 着色器中纹理名     static constexpr char* UNIFORM_VP = "u_projectionViewMatrix"; // 着色器中VP名  private:     GLuint m_program;     map<const char*, int> m_attributes;     map<const char*, int> m_uniforms;  public:     ShaderProgram(const char* vertexCode, const char* fragmentCode);     ~ShaderProgram();     void bind();     GLuint getHandle() { return m_program; }      // 操作attribute属性     void enableVertexAttribArray(const char* name);     void enableVertexAttribArray(int location);     void setVertexAttribPointer(const char* name, int size, int type, bool normalize, int stride, int offset);     void setVertexAttribPointer(int location, int size, int type, bool normalize, int stride, int offset);     void disableVertexAttribArray(const char* name);     void disableVertexAttribArray(int location);      // 操作uniform属性     void setUniformi(const char* name, int value);     void setUniformi(int location, int value);     void setUniformi(const char* name, int value1, int value2);     void setUniformi(int location, int value1, int value2);     void setUniformi(const char* name, int value1, int value2, int value3);     void setUniformi(int location, int value1, int value2, int value3);     void setUniformi(const char* name, int value1, int value2, int value3, int value4);     void setUniformi(int location, int value1, int value2, int value3, int value4);     void setUniformf(const char* name, float value);     void setUniformf(int location, float value);     void setUniformf(const char* name, float value1, float value2);     void setUniformf(int location, float value1, float value2);     void setUniformf(const char* name, float value1, float value2, int value3);     void setUniformf(int location, float value1, float value2, int value3);     void setUniformf(const char* name, float value1, float value2, int value3, int value4);     void setUniformf(int location, float value1, float value2, int value3, int value4);     void setUniform1fv(const char* name, int length, const float values[]);     void setUniform1fv(int location, int count, float const values[]);     void setUniform2fv(const char* name, int count, const float values[]);     void setUniform2fv(int location, int count, const float values[]);     void setUniform3fv(const char* name, int count, const float values[]);     void setUniform3fv(int location, int count, const float values[]);     void setUniform4fv(const char* name, int count, const float values[]);     void setUniform4fv(int location, int count, const float values[]);     void setUniformMatrix2fv(const char* name, int count, bool transpose, const float *value);     void setUniformMatrix2fv(int location, int count, bool transpose, const float *value);     void setUniformMatrix3fv(const char* name, int count, bool transpose, const float *value);     void setUniformMatrix3fv(int location, int count, bool transpose, const float *value);     void setUniformMatrix4fv(const char* name, int count, bool transpose, const float *value);     void setUniformMatrix4fv(int location, int count, bool transpose, const float *value);      int fetchAttributeLocation(const char* name);     int fetchUniformLocation(const char* name);  private:     void compileShaders(const char* vertexCode, const char* fragmentCode);     GLuint loadShader(GLenum type, const char* source);     GLuint linkProgram(GLuint vertexShader, GLuint fragmentShader); }; } // namespace glcore 

​ shader_program.cpp

#include <android/log.h>  #include "glcore/gl_inspector.h" #include "glcore/shader_program.h"  #define LOG_TAG "Native: ShaderProgram" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  namespace glcore { ShaderProgram::ShaderProgram(const char* vertexCode, const char* fragmentCode) {     compileShaders(vertexCode, fragmentCode); }  ShaderProgram::~ShaderProgram() {     if (m_program)     {         GL_CALL(glUseProgram(0));         GL_CALL(glDeleteProgram(m_program));         m_program = 0;     }     m_attributes.clear();     m_uniforms.clear(); }  void ShaderProgram::bind() {     GL_CALL(glUseProgram(m_program)); }  void ShaderProgram::enableVertexAttribArray(const char* name) {     int location = fetchAttributeLocation(name);     enableVertexAttribArray(location); }  void ShaderProgram::enableVertexAttribArray(int location) {     GL_CALL(glEnableVertexAttribArray(location)); }  void ShaderProgram::setVertexAttribPointer(const char *name, int size, int type, bool normalize, int stride, int offset) {     int location = fetchAttributeLocation(name);     setVertexAttribPointer(location, size, type, normalize, stride, offset); }  void ShaderProgram::setVertexAttribPointer(int location, int size, int type, bool normalize, int stride, int offset) {     GL_CALL(glVertexAttribPointer(location, size, type, normalize, stride, (void*) offset)); }  void ShaderProgram::disableVertexAttribArray(const char* name) {     int location = fetchAttributeLocation(name);     disableVertexAttribArray(location); }  void ShaderProgram::disableVertexAttribArray(int location) {     GL_CALL(glDisableVertexAttribArray(location)); }  void ShaderProgram::setUniformi(const char* name, int value) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform1i(location, value)); }  void ShaderProgram::setUniformi(int location, int value) {     GL_CALL(glUniform1i(location, value)); }  void ShaderProgram::setUniformi(const char* name, int value1, int value2) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform2i(location, value1, value2)); }  void ShaderProgram::setUniformi(int location, int value1, int value2) {     GL_CALL(glUniform2i(location, value1, value2)); }  void ShaderProgram::setUniformi(const char* name, int value1, int value2, int value3) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform3i(location, value1, value2, value3)); }  void ShaderProgram::setUniformi(int location, int value1, int value2, int value3) {     GL_CALL(glUniform3i(location, value1, value2, value3)); }  void ShaderProgram::setUniformi(const char* name, int value1, int value2, int value3, int value4) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform4i(location, value1, value2, value3, value4)); }  void ShaderProgram::setUniformi(int location, int value1, int value2, int value3, int value4) {     GL_CALL(glUniform4i(location, value1, value2, value3, value4)); }  void ShaderProgram::setUniformf(const char* name, float value) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform1f(location, value)); }  void ShaderProgram::setUniformf(int location, float value) {     GL_CALL(glUniform1f(location, value)); }  void ShaderProgram::setUniformf(const char* name, float value1, float value2) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform2f(location, value1, value2)); }  void ShaderProgram::setUniformf(int location, float value1, float value2) {     GL_CALL(glUniform2f(location, value1, value2)); }  void ShaderProgram::setUniformf(const char* name, float value1, float value2, int value3) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform3f(location, value1, value2, value3)); }  void ShaderProgram::setUniformf(int location, float value1, float value2, int value3) {     GL_CALL(glUniform3f(location, value1, value2, value3)); }  void ShaderProgram::setUniformf(const char* name, float value1, float value2, int value3, int value4) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform4f(location, value1, value2, value3, value4)); }  void ShaderProgram::setUniformf(int location, float value1, float value2, int value3, int value4) {     GL_CALL(glUniform4f(location, value1, value2, value3, value4)); }  void ShaderProgram::setUniform1fv(const char* name, int count, const float values[]) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform1fv(location, count, values)); }  void ShaderProgram::setUniform1fv(int location, int count, const float values[]) {     GL_CALL(glUniform1fv(location, count, values)); }  void ShaderProgram::setUniform2fv(const char* name, int count, const float values[]) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform2fv(location, count / 2, values)); }  void ShaderProgram::setUniform2fv(int location, int count, const float values[]) {     GL_CALL(glUniform2fv(location, count / 2, values)); }  void ShaderProgram::setUniform3fv(const char* name, int count, const float values[]) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform3fv(location, count / 3, values)); }  void ShaderProgram::setUniform3fv(int location, int count, const float values[]) {     GL_CALL(glUniform3fv(location, count / 3, values)); }  void ShaderProgram::setUniform4fv(const char* name, int count, const float values[]) {     int location = fetchUniformLocation(name);     GL_CALL(glUniform4fv(location, count / 4, values)); }  void ShaderProgram::setUniform4fv(int location, int count, const float values[]) {     GL_CALL(glUniform4fv(location, count / 4, values)); }  void ShaderProgram::setUniformMatrix2fv(const char* name, int count, bool transpose, const float *value) {     int location = fetchUniformLocation(name);     GL_CALL(glUniformMatrix2fv(location, count, transpose, value)); }  void ShaderProgram::setUniformMatrix2fv(int location, int count, bool transpose, const float *value) {     GL_CALL(glUniformMatrix2fv(location, count, transpose, value)); }  void ShaderProgram::setUniformMatrix3fv(const char* name, int count, bool transpose, const float *value) {     int location = fetchUniformLocation(name);     GL_CALL(glUniformMatrix3fv(location, count, transpose, value)); }  void ShaderProgram::setUniformMatrix3fv(int location, int count, bool transpose, const float *value) {     GL_CALL(glUniformMatrix3fv(location, count, transpose, value)); }  void ShaderProgram::setUniformMatrix4fv(const char* name, int count, bool transpose, const float *value) {     int location = fetchUniformLocation(name);     GL_CALL(glUniformMatrix4fv(location, count, transpose, value)); }  void ShaderProgram::setUniformMatrix4fv(int location, int count, bool transpose, const float *value) {     GL_CALL(glUniformMatrix4fv(location, count, transpose, value)); }  int ShaderProgram::fetchAttributeLocation(const char* name) {     int location;     auto it = m_attributes.find(name);     if (it == m_attributes.end())     {         GL_CALL(location = glGetAttribLocation(m_program, name));         if (location == -1) {             LOGI("no attribute: %s", name);             //GLInspector::printProgramInfoLog(m_program, "fetchAttributeLocation");             return -1;         }         m_attributes[name] = location;     }     else     {         location = it->second;     }     return location; }  int ShaderProgram::fetchUniformLocation(const char* name) {     int location;     auto it = m_uniforms.find(name);     if (it == m_uniforms.end())     {         GL_CALL(location = glGetUniformLocation(m_program, name));         if (location == -1) {             LOGI("no uniform: %s", name);             //GLInspector::printProgramInfoLog(m_program, "fetchUniformLocation");             return -1;         }         m_uniforms[name] = location;     }     else     {         location = it->second;     }     return location; }  void ShaderProgram::compileShaders(const char* vertexCode, const char* fragmentCode) {     GLuint vertexShader = loadShader(GL_VERTEX_SHADER, vertexCode);     GLuint fragmentShader = loadShader(GL_FRAGMENT_SHADER, fragmentCode);     m_program = linkProgram(vertexShader, fragmentShader); }  GLuint ShaderProgram::loadShader(GLenum type, const char* source) {     GL_CALL(GLuint shader = glCreateShader(type));     GL_CALL(glShaderSource(shader, 1, &source, nullptr));     GL_CALL(glCompileShader(shader));     GLint success;     glGetShaderiv(shader, GL_COMPILE_STATUS, &success);     if (!success) {         GLInspector::printShaderInfoLog(shader, "loadShader");         return 0;     }     return shader; }  GLuint ShaderProgram::linkProgram(GLuint vertexShader, GLuint fragmentShader) {     GL_CALL(GLuint program = glCreateProgram());     GL_CALL(glAttachShader(program, vertexShader));     GL_CALL(glAttachShader(program, fragmentShader));     GL_CALL(glLinkProgram(program));     GLint success;     glGetProgramiv(program, GL_LINK_STATUS, &success);     if (!success) {         GLInspector::printProgramInfoLog(m_program, "linkProgram");     }     GL_CALL(glDeleteShader(vertexShader));     GL_CALL(glDeleteShader(fragmentShader));     return program; } } // namespace glcore 

2.8 VBO

​ VBO 是 Vertex Buffer Object 的简称,即顶点缓冲对象,作用是缓存顶点数据到显存中,避免频繁调用 glVertexAttribPointer 传输顶点数据,减少 CPU 到 GPU 的数据传输,提高渲染效率。

​ 顶点属性主要有位置、颜色、纹理坐标、法线、切线、副切线等,每个属性又有属性标识、维数、是否已标准化、数据类型、偏移、别名、纹理单元等。

​ 由于 VBO 中有多个属性数据,每个属性有多个字段,笔者除了封装 VertexBufferObject 类,还封装了 VertexAttributes 和 VertexAttribute 两个类。VertexAttribute 是属性描述类,VertexAttributes 是属性描述集合。

​ vertex_buffer_object.h

#pragma once  #include <initializer_list> #include <vector>  #include "core_lib.h" #include "shader_program.h" #include "vertex_attributes.h" #include "vertex_attribute.h" #include "vertex_attributes.h"  using namespace std;  namespace glcore { /**  * 顶点属性缓冲对象 (简称VBO)  * @author little fat sheep  */ class VertexBufferObject { protected:     bool m_isBound = false; // 是否已绑定到VBO (或VAO)     bool m_isDirty = false; // 是否有脏数据 (缓存的数据需要更新)  private:     GLuint m_vboHandle; // VBO句柄     VertexAttributes* m_attributes; // 顶点属性     GLuint m_usage; // GL_STATIC_DRAW 或 GL_DYNAMIC_DRAW     const float* m_vertices; // 顶点属性数据     int m_vertexNum = 0; // 顶点个数     int m_bytes = 0; // 顶点属性字节数  public:     VertexBufferObject(bool isStatic, initializer_list<VertexAttribute*> attributes);     VertexBufferObject(bool isStatic, VertexAttributes* attributes);     virtual ~VertexBufferObject();     void setVertices(float* vertices, int bytes);     void bind(ShaderProgram* shader);     virtual void bind(ShaderProgram* shader, int* locations);     void unbind(ShaderProgram* shader);     virtual void unbind(ShaderProgram* shader, int* locations);     int getNumVertices() { return m_vertexNum; }  private:     void applyBufferData(); // 缓存数据 }; } // namespace glcore 

​ vertex_buffer_object.cpp

#include <android/log.h>  #include "glcore/gl_inspector.h" #include "glcore/vertex_buffer_object.h"  #define LOG_TAG "Native: VertexBufferObject" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  namespace glcore { VertexBufferObject::VertexBufferObject(bool isStatic, initializer_list<VertexAttribute*> attributes):     VertexBufferObject(isStatic, new VertexAttributes(attributes)) { }  VertexBufferObject::VertexBufferObject(bool isStatic, VertexAttributes* attributes):     m_attributes(attributes) {     m_usage = isStatic ? GL_STATIC_DRAW : GL_DYNAMIC_DRAW;     GL_CALL(glGenBuffers(1, &m_vboHandle));     LOGI("init: %d", m_vboHandle); }  VertexBufferObject::~VertexBufferObject() {     LOGI("destroy");     GL_CALL(glBindBuffer(GL_ARRAY_BUFFER, 0));     GL_CALL(glDeleteBuffers(1, &m_vboHandle));     m_vboHandle = 0;     delete m_attributes;     delete[] m_vertices; }  void VertexBufferObject::setVertices(float* vertices, int bytes) {     m_vertices = vertices;     m_vertexNum = bytes / m_attributes->vertexSize;     m_bytes = bytes;     m_isDirty = true;     if (m_isBound)     {         applyBufferData();     } }  void VertexBufferObject::bind(ShaderProgram* shader) {     bind(shader, nullptr); }  void VertexBufferObject::bind(ShaderProgram* shader, int* locations) {     GL_CALL(glBindBuffer(GL_ARRAY_BUFFER, m_vboHandle));     if (m_isDirty)     {         applyBufferData();     }     if (locations == nullptr)     {         for (int i = 0; i < m_attributes->size(); i++)         {             VertexAttribute* attribute = m_attributes->get(i);             shader->enableVertexAttribArray(attribute->alias);             shader->setVertexAttribPointer(attribute->alias, attribute->numComponents,                attribute->type, attribute->normalized, m_attributes->vertexSize,                attribute->offset);         }     }     else     {         for (int i = 0; i < m_attributes->size(); i++)         {             VertexAttribute* attribute = m_attributes->get(i);             shader->enableVertexAttribArray(locations[i]);             shader->setVertexAttribPointer(locations[i], attribute->numComponents,                attribute->type, attribute->normalized, m_attributes->vertexSize,                attribute->offset);         }     }     m_isBound = true; }  void VertexBufferObject::unbind(ShaderProgram* shader) {     unbind(shader, nullptr); }  void VertexBufferObject::unbind(ShaderProgram* shader, int* locations) {     if (locations == nullptr)     {         for (int i = 0; i < m_attributes->size(); i++)         {             shader->disableVertexAttribArray(m_attributes->get(i)->alias);         }     }     else     {         for (int i = 0; i < m_attributes->size(); i++)         {             shader->disableVertexAttribArray(locations[i]);         }     }     m_isBound = false; }  void VertexBufferObject::applyBufferData() {     GL_CALL(glBufferData(GL_ARRAY_BUFFER, m_bytes, m_vertices, m_usage));     //GLInspector::checkGLError("vbo: applyBufferData");     m_isDirty = false; } } // namespace glcore 

​ vertex_attributes.h

#pragma once  #include <initializer_list> #include <vector>  #include "vertex_attribute.h"  using namespace std;  namespace glcore { /**  * 顶点属性集(位置、颜色、纹理坐标、法线、切线、副切线等中的一部分)  * 每个顶点属性可以看作一个通道, 这个通道可能是多维的, 每个维度可能是多字节的  * @author little fat sheep  */ class VertexAttributes { public:     int vertexSize; // 所有顶点属性的字节数  private:     vector<VertexAttribute*> m_attributes; // 顶点属性列表  public:     VertexAttributes(initializer_list<VertexAttribute*> attributes);     ~VertexAttributes();     VertexAttribute* get(int index); // 根据索引获取属性     int size(); // 获取属性个数  private:     int calculateOffsets(); // 计算偏移 };  /**  * 顶点属性标识  * @author little fat sheep  */ class Usage { public:     static const int Position = 1;     static const int ColorUnpacked = 2;     static const int ColorPacked = 4;     static const int Normal = 8;     static const int TextureCoordinates = 16;     static const int Tangent = 32;     static const int BiNormal = 64; }; } // namespace glcore 

​ vertex_attributes.cpp

#include "glcore/vertex_attributes.h"  namespace glcore { VertexAttributes::VertexAttributes(initializer_list<VertexAttribute*> attributes):         m_attributes(attributes) {     vertexSize = calculateOffsets(); }  VertexAttributes::~VertexAttributes() {     m_attributes.clear(); }  VertexAttribute* VertexAttributes::get(int index) {     if (index >= 0 && index < m_attributes.size())     {         return m_attributes[index];     }     return nullptr; }  int VertexAttributes::size() {     return m_attributes.size(); }  int VertexAttributes::calculateOffsets() {     int count = 0;     for (VertexAttribute* attribute : m_attributes) {         attribute->offset = count;         count += attribute->getSizeInBytes();     }     return count; } } // namespace glcore 

​ vertex_attribute.h

#pragma once  namespace glcore { /**  * 单个顶点属性(位置、颜色、纹理坐标、法线、切线、副切线等中的一个)  * 每个顶点属性可以看作一个通道, 这个通道可能是多维的, 每个维度可能是多字节的  * @author little fat sheep  */ class VertexAttribute { public:     int usage; // 顶点属性标识     int numComponents; // 顶点属性维数 (如顶点坐标属性是3维的, 纹理坐标是2维的)     bool normalized; // 顶点属性是否已经标准化 (有符号: -1~1, 无符号: 0~1)     int type; // 顶点属性的变量类型 (GL_FLOAT、GL_UNSIGNED_BYTE等)     int offset; // 顶点属性在字节上的偏移     const char* alias; // 顶点属性别名 (着色器中变量名)     int unit; // 纹理单元 (可能有多个纹理, 可选)  public:     VertexAttribute(int usage, int numComponents, const char* alias);     VertexAttribute(int usage, int numComponents, const char* alias, int unit);     VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias);     VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias, int unit);     ~VertexAttribute();      static VertexAttribute* Position(); // 位置参数信息     static VertexAttribute* TexCoords(int unit); // 纹理坐标参数信息     static VertexAttribute* Normal(); // 法线参数信息     static VertexAttribute* ColorPacked(); // 颜色参数信息     static VertexAttribute* ColorUnpacked(); // 颜色参数信息     static VertexAttribute* Tangent(); // 切线参数信息     static VertexAttribute* Binormal(); // 副切线参数信息      int getSizeInBytes(); // 属性对应的字节数  private:     void create(int usage, int numComponents, int type, bool normalized, const char* alias, int unit); }; } // namespace glcore 

​ vertex_attribute.cpp

#include <android/log.h> #include <string>  #include "glcore/shader_program.h" #include "glcore/vertex_attribute.h" #include "glcore/vertex_attributes.h"  #define LOG_TAG "Native: VertexAttribute" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  using namespace std;  namespace glcore { VertexAttribute::VertexAttribute(int usage, int numComponents, const char* alias):         VertexAttribute(usage, numComponents, alias, 0) { }  VertexAttribute::VertexAttribute(int usage, int numComponents, const char* alias, int unit) {     int type = usage == Usage::ColorPacked ? GL_UNSIGNED_BYTE : GL_FLOAT;     bool normalized = usage == Usage::ColorPacked;     create(usage, numComponents, type, normalized, alias, unit); }  VertexAttribute::VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias) {     create(usage, numComponents, type, normalized, alias, 0); }  VertexAttribute::VertexAttribute(int usage, int numComponents, int type, bool normalized, const char* alias, int unit) {     create(usage, numComponents, type, normalized, alias, unit); }  VertexAttribute::~VertexAttribute() {     free((void*)alias); }  VertexAttribute* VertexAttribute::Position() {     return new VertexAttribute(Usage::Position, 3, ShaderProgram::ATTRIBUTE_POSITION); }  VertexAttribute* VertexAttribute::TexCoords(int unit) {     string str = string(ShaderProgram::ATTRIBUTE_TEXCOORD) + to_string(unit);     // 复制字符串, 避免str被回收导致悬垂指针问题, 通过free((void*)alias)释放内存     const char* combined = strdup(str.c_str());     return new VertexAttribute(Usage::TextureCoordinates, 2, combined, unit); }  VertexAttribute* VertexAttribute::Normal() {     return new VertexAttribute(Usage::Normal, 3, ShaderProgram::ATTRIBUTE_NORMAL); }  VertexAttribute* VertexAttribute::ColorPacked() {     return new VertexAttribute(Usage::ColorPacked, 4, GL_UNSIGNED_BYTE, true, ShaderProgram::ATTRIBUTE_COLOR); }  VertexAttribute* VertexAttribute::ColorUnpacked() {     return new VertexAttribute(Usage::ColorUnpacked, 4, GL_FLOAT, false, ShaderProgram::ATTRIBUTE_COLOR); }  VertexAttribute* VertexAttribute::Tangent() {     return new VertexAttribute(Usage::Tangent, 3, ShaderProgram::ATTRIBUTE_TANGENT); }  VertexAttribute* VertexAttribute::Binormal() {     return new VertexAttribute(Usage::BiNormal, 3, ShaderProgram::ATTRIBUTE_BINORMAL); }  int VertexAttribute::getSizeInBytes() {     switch (type) {         case GL_FLOAT:         case GL_FIXED:             return 4 * numComponents;         case GL_UNSIGNED_BYTE:         case GL_BYTE:             return numComponents;         case GL_UNSIGNED_SHORT:         case GL_SHORT:             return 2 * numComponents;     }     return 0; }  void VertexAttribute::create(int usage, int numComponents, int type, bool normalized, const char* alias, int unit) {     this->usage = usage;     this->numComponents = numComponents;     this->type = type;     this->normalized = normalized;     this->alias = alias;     this->unit = unit;     LOGI("create, alias: %s", alias); } } // namespace glcore 

2.9 VAO

​ VAO 是 Vertex Array Object 的简称,即顶点数组对象,作用是缓存顶点属性的指针和描述(或格式)信息,简化顶点属性设置的流程,避免频繁调用 glVertexAttribPointer 设置属性描述(或格式)信息,减少 CPU 与 GPU 的交互,提高渲染效率。

​ vertex_buffer_object_with_vao.h

#pragma once  #include <initializer_list>  #include "core_lib.h" #include "vertex_buffer_object.h"  namespace glcore { /**  * 携带VAO的顶点属性缓冲对象  * @author little fat sheep  */ class VertexBufferObjectWithVAO : public VertexBufferObject { private:     GLuint m_vaoHandle; // VAO句柄  public:     VertexBufferObjectWithVAO(bool isStatic, initializer_list<VertexAttribute*> attributes);     VertexBufferObjectWithVAO(bool isStatic, VertexAttributes* attributes);     ~VertexBufferObjectWithVAO() override;     void bind(ShaderProgram* shader, int* locations) override;     void unbind(ShaderProgram* shader, int* locations) override; }; } // namespace glcore 

​ vertex_buffer_object_with_vao.cpp

#include <android/log.h>  #include "glcore/gl_inspector.h" #include "glcore/vertex_buffer_object_with_vao.h"  #define LOG_TAG "Native: VertexBufferObjectWithVAO" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  namespace glcore { VertexBufferObjectWithVAO::VertexBufferObjectWithVAO(bool isStatic,     initializer_list<VertexAttribute*> attributes):         VertexBufferObjectWithVAO(isStatic, new VertexAttributes(attributes)) { }  VertexBufferObjectWithVAO::VertexBufferObjectWithVAO(bool isStatic, VertexAttributes* attributes):     VertexBufferObject(isStatic, attributes) {     GL_CALL(glGenVertexArrays(1, &m_vaoHandle));     LOGI("init: %d", m_vaoHandle); }  VertexBufferObjectWithVAO::~VertexBufferObjectWithVAO() {     LOGI("destroy");     GL_CALL(glDeleteVertexArrays(1, &m_vaoHandle)); }  void VertexBufferObjectWithVAO::bind(ShaderProgram* shader, int* locations) {     GL_CALL(glBindVertexArray(m_vaoHandle));     if (m_isDirty)     {         VertexBufferObject::bind(shader, locations);     }     m_isBound = true; }  void VertexBufferObjectWithVAO::unbind(ShaderProgram* shader, int* locations) {     GL_CALL(glBindVertexArray(0));     m_isBound = false; } } // namespace glcore 

2.10 IBO

​ IBO 是 Index Buffer Object 的简称,即索引缓冲对象,作用是缓存顶点索引到显存中,避免频繁调用 glDrawElements 传输顶点索引,减少 CPU 到 GPU 的数据传输,提高渲染效率。由于 IBO 绑定的是 OpenGL ES 状态机的 GL_ELEMENT_ARRAY_BUFFER “插槽”,并且对应的绘制指令又是 glDrawElements (都有 Element),因此 IBO 也被称为 EBO。

​ index_buffer_object.h

#pragma once  #include "core_lib.h"  namespace glcore { /**  * 顶点索引缓冲对象 (简称IBO)  * @author little fat sheep  */ class IndexBufferObject { private:     GLuint m_iboHandle; // IBO句柄     GLuint m_usage; // GL_STATIC_DRAW 或 GL_DYNAMIC_DRAW     GLenum m_type = GL_UNSIGNED_SHORT; // 索引数据类型 (GL_UNSIGNED_SHORT 或 GL_UNSIGNED_INT)     const void* m_indices; // 顶点索引数据(short*或int*类型)     int m_indexNum = 0; // 索引个数     int m_bytes = 0; // 顶点索引字节数     bool m_isDirty = false; // 是否有脏数据 (缓存的数据需要更新)     bool m_isBound = false; // 是否已绑定到IBO  public:     IndexBufferObject(bool isStatic);     IndexBufferObject(bool isStatic, GLenum type);     ~IndexBufferObject();     void setIndices (void* indices, int bytes);     void setIndices (void* indices, int bytes, GLenum type);     void bind();     void unbind();     int getNumIndices() { return m_indexNum; }     GLenum getType() { return m_type; }  private:     void applyBufferData(); // 缓存数据     int getTypeSize(); // 获取type对应的字节数 }; } // namespace glcore 

​ index_buffer_object.cpp

#include <android/log.h>  #include "glcore/gl_inspector.h" #include "glcore/index_buffer_object.h"  #define LOG_TAG "Native: IndexBufferObject" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  namespace glcore { IndexBufferObject::IndexBufferObject(bool isStatic):         IndexBufferObject(isStatic, GL_UNSIGNED_SHORT) { }  IndexBufferObject::IndexBufferObject(bool isStatic, GLenum type) {     m_usage = isStatic ? GL_STATIC_DRAW : GL_DYNAMIC_DRAW;     m_type = type;     GL_CALL(glGenBuffers(1, &m_iboHandle));     LOGI("init: %d", m_iboHandle); }  IndexBufferObject::~IndexBufferObject() {     LOGI("destroy");     GL_CALL(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));     GL_CALL(glDeleteBuffers(1, &m_iboHandle));     m_iboHandle = 0;     delete[] m_indices; }  void IndexBufferObject::setIndices(void* indices, int bytes) {     setIndices(indices, bytes, m_type); }  void IndexBufferObject::setIndices(void* indices, int bytes, GLenum type) {     m_indices = indices;     m_type = type;     m_indexNum = bytes > 0 ? bytes / getTypeSize() : 0;     m_bytes = bytes;     m_isDirty = true;     if (m_isBound)     {         applyBufferData();     } }  void IndexBufferObject::bind() {     GL_CALL(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_iboHandle));     if (m_isDirty)     {         applyBufferData();     }     m_isBound = true; }  void IndexBufferObject::unbind() {     GL_CALL(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));     m_isBound = false; }  void IndexBufferObject::applyBufferData() {     GL_CALL(glBufferData(GL_ELEMENT_ARRAY_BUFFER, m_bytes, m_indices, m_usage));     //GLInspector::checkGLError("ibo: applyBufferData");     m_isDirty = false; }  int IndexBufferObject::getTypeSize() {     switch (m_type) {         case GL_UNSIGNED_SHORT:             return 2;         case GL_UNSIGNED_INT:             return 4;     }     return 2; } } // namespace glcore 

2.11 Mesh

​ Mesh 是网格类,用于管理顶点数据、索引、描述(或格式)等信息,由于 VBO 管理了顶点数据、IBO 管理了顶点索引、VAO 管理了顶点描述(或格式),因此 Mesh 只需管理 VBO、IBO、VAO。另外 IBO 和 VAO 是可选的,Mesh 中需要根据用户的行为调整渲染指令。

​ 为方便用户快速创建平面网格,笔者提供了 MeshUtils 类,用户也可以根据该类提供的模板创建自己的网格。

​ mesh.h

#pragma once  #include <initializer_list>  #include "core_lib.h" #include "index_buffer_object.h" #include "shader_program.h" #include "vertex_buffer_object.h" #include "vertex_attribute.h" #include "vertex_attributes.h"  using namespace std;  namespace glcore { /**  * 网格  * @author little fat sheep  */ class Mesh { private:     VertexBufferObject* m_vbo; // 顶点属性缓冲对象     IndexBufferObject* m_ibo; // 顶点索引缓冲对象     GLenum m_mode = GL_TRIANGLES; // 渲染模式 (GL_TRIANGLES、GL_TRIANGLE_STRIP、GL_TRIANGLE_FAN等)  public:     Mesh(bool isStatic, initializer_list<VertexAttribute*> attributes);     Mesh(bool isStatic, VertexAttributes* attributes);     Mesh(bool useVao, bool isStatic, initializer_list<VertexAttribute*> attributes);     Mesh(bool useVao, bool isStatic, VertexAttributes* attributes);     ~Mesh();     void setVertices(float* vertices, int bytes); // 设置顶点属性     void setIndices(void* indices, int bytes); // 设置顶点索引     void setIndices(void* indices, int bytes, GLenum type); // 设置顶点索引     void setMode(GLenum mode); // 设置渲染模式     void render(ShaderProgram* shader); // 渲染 }; } // namespace glcore 

​ mesh.cpp

#include "glcore/gl_inspector.h" #include "glcore/mesh.h" #include "glcore/vertex_buffer_object_with_vao.h"  namespace glcore { Mesh::Mesh(bool isStatic, initializer_list<VertexAttribute*> attributes):     Mesh(true, isStatic, new VertexAttributes(attributes)) { }  Mesh::Mesh(bool isStatic, VertexAttributes* attributes):     Mesh(true, isStatic, attributes) { }  Mesh::Mesh(bool useVao, bool isStatic, initializer_list<VertexAttribute*> attributes):     Mesh(useVao, isStatic, new VertexAttributes(attributes)) { }  Mesh::Mesh(bool useVao, bool isStatic, VertexAttributes* attributes) {     m_vbo = useVao ? new VertexBufferObjectWithVAO(isStatic, attributes) :             new VertexBufferObject(isStatic, attributes);     m_ibo = new IndexBufferObject(isStatic); }  Mesh::~Mesh() {     delete m_vbo;     delete m_ibo; }  void Mesh::setVertices(float* vertices, int bytes) {     m_vbo->setVertices(vertices, bytes); }  void Mesh::setIndices(void* indices, int bytes) {     m_ibo->setIndices(indices, bytes); }  void Mesh::setIndices(void* indices, int bytes, GLenum type) {     m_ibo->setIndices(indices, bytes, type); }  void Mesh::setMode(GLenum mode) {     m_mode = mode; }  void Mesh::render(ShaderProgram* shader) {     m_vbo->bind(shader);     if (m_ibo->getNumIndices() > 0) {         m_ibo->bind();         GL_CALL(glDrawElements(m_mode, m_ibo->getNumIndices(), m_ibo->getType(), nullptr));         m_ibo->unbind();     } else {         GL_CALL(glDrawArrays(m_mode, 0, m_vbo->getNumVertices()));     }     m_vbo->unbind(shader); } } // namespace glcore 

​ mesh_utils.h

#pragma once  #include "mesh.h"  namespace glcore { /**  * 网格工具类  * @author little fat sheep  */ class MeshUtils { public:     static Mesh* createRect(bool reverse);  private:     static float* getRectVertices(bool reverse); }; } // namespace glcore 

​ mesh_utils.cpp

#include "glcore/mesh_utils.h"  namespace glcore { Mesh* MeshUtils::createRect(bool reverse) {     Mesh* mesh = new Mesh(true, {             VertexAttribute::Position(),             VertexAttribute::TexCoords(0)     });     float* vertices = getRectVertices(reverse);     mesh->setVertices(vertices, 4 * 5 * sizeof(float));     void* indices = new short[] { 0, 1, 2, 2, 3, 0 };     mesh->setIndices(indices, 6 * sizeof(short));     return mesh; }  float* MeshUtils::getRectVertices(bool reverse) {     if (reverse) {         return new float[] { // 中间渲染(FBO)使用                 -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, // 左下                 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, // 右下                 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, // 右上                 -1.0f, 1.0f, 0.0f, 0.0f, 1.0f // 左上         };     }     return new float[] { // 终端渲染使用             -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, // 左下             1.0f, -1.0f, 0.0f, 1.0f, 1.0f, // 右下             1.0f, 1.0f, 0.0f, 1.0f, 0.0f, // 右上             -1.0f, 1.0f, 0.0f, 0.0f, 0.0f // 左上     }; } } // namespace glcore 

2.12 GLTexture

​ 封装 GLTexture 类是了方便用户进行纹理贴图。为了方便管理多渲染目标图层,定义了 TextureAction 接口,并提供 bind 函数,GLTexture、FBO 都继承了 TextureAction,用户自定义的渲染器或特效类也可以继承 TextureAction,将它们统一视为纹理活动(可绑定),这在特效叠加(或后处理)中非常有用,易于扩展。

​ texture_action.h

#pragma once  #include "core_lib.h" #include "shader_program.h"  namespace glcore { /**  * 纹理活动 (纹理绑定、FBO绑定)  * @author little fat sheep  */ class TextureAction { public:     virtual ~TextureAction() = default;     virtual void setTexParameter(GLint filter, GLint wrap) {}     virtual void setBindParameter(char* alias, GLenum unit) {}     virtual void bind(ShaderProgram* shader) = 0; }; } // namespace glcore 

​ gl_texture.h

#pragma once  #include "core_lib.h" #include "shader_program.h" #include "texture_action.h"  namespace glcore { /**  * 纹理贴图  * @author little fat sheep  */ class GLTexture: public TextureAction { private:     GLuint m_textureHandle = 0; // 纹理句柄     int m_width = 0; // 纹理宽度     int m_height = 0; // 纹理高度     GLint m_filter = GL_LINEAR; // 滤波方式     GLint m_wrap = GL_CLAMP_TO_EDGE; // 环绕方式     const char* m_alias = ShaderProgram::UNIFORM_TEXTURE; // 纹理别名(着色器中变量名)     GLenum m_unit = 0; // 纹理单元 (可能有多个纹理)     bool m_isDirty = false; // 是否有脏数据 (纹理参数需要更新)  public:     GLTexture(int width, int height);     GLTexture(void *buffer, int width, int height);     ~GLTexture() override;     void setTexture(const void *buffer);     void setTexParameter(GLint filter, GLint wrap) override;     void setBindParameter(char* alias, GLenum unit) override;     void bind(ShaderProgram* shader) override;     int getWidth() { return m_width; }     int getHeight() { return m_height; }  private:     void applyTexParameter(); }; } // namespace glcore 

​ gl_texture.cpp

#include "glcore/gl_inspector.h" #include "glcore/gl_texture.h"  namespace glcore { GLTexture::GLTexture(int width, int height):     m_width(width),     m_height(height) { }  GLTexture::GLTexture(void *buffer, int width, int height): GLTexture(width, height) {     setTexture(buffer); }  GLTexture::~GLTexture() {     GL_CALL(glBindTexture(GL_TEXTURE_2D, 0));     if (m_textureHandle != 0) {         GL_CALL(glDeleteTextures(1, &m_textureHandle));         m_textureHandle = 0;     } }  /** * buffer 可以通过以下两种方式得到 * 1) bitmap.copyPixelsToBuffer(bytebuffer); *    void* buffer = env->GetDirectBufferAddress(bytebuffer); * 2) AndroidBitmap_lockPixels(env, bitmap, &buffer) */ void GLTexture::setTexture(const void *buffer) {     GL_CALL(glGenTextures(1, &m_textureHandle));     GL_CALL(glBindTexture(GL_TEXTURE_2D, m_textureHandle));     applyTexParameter();     GL_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_width, m_height, 0,                  GL_RGBA, GL_UNSIGNED_BYTE, buffer));     GL_CALL(glGenerateMipmap(GL_TEXTURE_2D));     GL_CALL(glBindTexture(GL_TEXTURE_2D, 0));     //GLInspector::checkGLError("setTexture"); }  void GLTexture::setTexParameter(GLint filter, GLint wrap) {     m_filter = filter;     m_wrap = wrap;     m_isDirty = true; }  void GLTexture::setBindParameter(char *alias, GLenum unit) {     m_alias = alias;     m_unit = unit; }  void GLTexture::bind(ShaderProgram *shader) {     shader->setUniformi(m_alias, m_unit);     GL_CALL(glActiveTexture(GL_TEXTURE0 + m_unit));     GL_CALL(glBindTexture(GL_TEXTURE_2D, m_textureHandle));     if (m_isDirty)     {         applyTexParameter();     } }  void GLTexture::applyTexParameter() {     GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_filter));     GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_filter));     GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrap));     GL_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrap));     m_isDirty = false; } } // namespace glcore 

2.13 FBO

​ FBO 是 Frame Buffer Object 的简称,即帧缓冲对象,主要用于离屏渲染、特效叠加,

​ frame_buffer_object.h

#pragma once  #include "core_lib.h" #include "format.h" #include "shader_program.h" #include "texture_action.h"  namespace glcore { /**  * 帧缓冲对象 (简称FBO, 用于离屏渲染)  * @author little fat sheep  */ class FrameBufferObject: public TextureAction { private:     Format* m_format; // 颜色格式     int m_width; // 缓冲区宽度     int m_height; // 缓冲区高度     bool m_hasDepth; // 是否有深度缓冲区     bool m_hasStencil; // 是否有模板缓冲区     GLuint m_frameBufferHandle; // 帧缓冲区句柄     GLuint m_depthBufferHandle; // 深度缓冲区句柄     GLuint m_stencilBufferHandle; // 模板缓冲区句柄     GLuint m_colorTextureHandle; // 颜色缓冲区句柄     GLint m_preFramebufferHandle; // 前一个帧缓冲区句柄     int m_preFramebufferViewPort[4]; // 前一个帧缓冲区视口     GLint m_filter = GL_LINEAR; // 滤波方式     GLint m_wrap = GL_CLAMP_TO_EDGE; // 环绕方式     const char* m_alias = ShaderProgram::UNIFORM_TEXTURE; // 纹理别名(着色器中变量名)     GLenum m_unit = 0; // 纹理单元 (可能有多个纹理)     bool m_isDirty = true; // 是否有脏数据 (纹理参数需要更新)  public:     FrameBufferObject(Format* format, int width, int height, bool hasDepth, bool hasStencil);     ~FrameBufferObject() override;     void setTexParameter(GLint filter, GLint wrap) override;     void setBindParameter(char* alias, GLenum unit) override;     void begin();     void end();     void bind(ShaderProgram* shader) override;  private:     void applyTexParameter(); }; } // namespace glcore 

​ frame_buffer_object.cpp

#include "glcore/frame_buffer_object.h" #include "glcore/gl_inspector.h"  namespace glcore { FrameBufferObject::FrameBufferObject(Format* format, int width, int height, bool hasDepth, bool hasStencil) {     m_format = format;     m_width = width;     m_height = height;     m_hasDepth = hasDepth;     m_hasStencil = hasStencil;     GL_CALL(glGenFramebuffers(1, &m_frameBufferHandle));     begin();     if (m_hasDepth)     {         GL_CALL(glGenRenderbuffers(1, &m_depthBufferHandle));         GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, m_depthBufferHandle));         GL_CALL(glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width, height));         GL_CALL(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,             GL_RENDERBUFFER, m_depthBufferHandle));         GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, 0));     }     if (m_hasStencil)     {         GL_CALL(glGenRenderbuffers(1, &m_stencilBufferHandle));         GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, m_stencilBufferHandle));         GL_CALL(glRenderbufferStorage(GL_RENDERBUFFER, GL_STENCIL_INDEX8, width, height));         GL_CALL(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,             GL_RENDERBUFFER, m_stencilBufferHandle));         GL_CALL(glBindRenderbuffer(GL_RENDERBUFFER, 0));     }     GL_CALL(glGenTextures(1, &m_colorTextureHandle));     GL_CALL(glBindTexture(GL_TEXTURE_2D, m_colorTextureHandle));     GL_CALL(glTexImage2D(GL_TEXTURE_2D, 0, m_format->getFormat(), m_width,     m_height, 0, m_format->getFormat(), m_format->getType(), nullptr));     applyTexParameter();     GL_CALL(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,         GL_TEXTURE_2D, m_colorTextureHandle, 0));     end(); }  FrameBufferObject::~FrameBufferObject() {     GL_CALL(glBindTexture(GL_TEXTURE_2D, 0));     GL_CALL(glDeleteTextures(1, &m_colorTextureHandle));     if (m_hasDepth) {         GL_CALL(glDeleteRenderbuffers(1, &m_depthBufferHandle));     }     if (m_hasStencil) {         GL_CALL(glDeleteRenderbuffers(1, &m_stencilBufferHandle));     }     GL_CALL(glDeleteFramebuffers(1, &m_frameBufferHandle)); }  void FrameBufferObject::setTexParameter(GLint filter, GLint wrap) {     m_filter = filter;     m_wrap = wrap;     m_isDirty = true; }  void FrameBufferObject::setBindParameter(char* alias, GLenum unit) {     m_alias = alias;     m_unit = unit; }  void FrameBufferObject::begin() {     GL_CALL(glGetIntegerv(GL_FRAMEBUFFER_BINDING, &m_preFramebufferHandle));     GL_CALL(glGetIntegerv(GL_VIEWPORT, m_preFramebufferViewPort));     GL_CALL(glBindFramebuffer(GL_FRAMEBUFFER, m_frameBufferHandle));     GL_CALL(glViewport(0, 0, m_width, m_height)); }  void FrameBufferObject::end() {     GL_CALL(glBindFramebuffer(GL_FRAMEBUFFER, m_preFramebufferHandle));     GL_CALL(glViewport(m_preFramebufferViewPort[0], m_preFramebufferViewPort[1],         m_preFramebufferViewPort[2], m_preFramebufferViewPort[3])); }  void FrameBufferObject::bind(ShaderProgram* shader) {     shader->setUniformi(m_alias, m_unit);     GL_CALL(glActiveTexture(GL_TEXTURE0 + m_unit));     GL_CALL(glBindTexture(GL_TEXTURE_2D, m_colorTextureHandle));     if (m_isDirty)     {         applyTexParameter();     } }  void FrameBufferObject::applyTexParameter() {     GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_filter));     GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_filter));     GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrap));     GL_CALL(glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrap));     m_isDirty = false; } } // namespace glcore 

​ format.h

#pragma once  #include "core_lib.h"  namespace glcore { /**  * 纹理格式  * @author little fat sheep  */ class Format { private:     GLint format;     GLenum type;  public:     Format(GLint format, GLenum type);     GLint getFormat() { return format; }     GLenum getType() { return type; }      static Format* Alpha();     static Format* LuminanceAlpha();     static Format* RGB565();     static Format* RGBA4444();     static Format* RGB888();     static Format* RGBA8888(); }; } // namespace glcore 

​ format.cpp

#include "glcore/format.h"  namespace glcore { Format::Format(GLint format, GLenum type):     format(format),     type(type) { }  Format *Format::Alpha() {     return new Format(GL_ALPHA, GL_UNSIGNED_BYTE); }  Format *Format::LuminanceAlpha() {     return new Format(GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE); }  Format *Format::RGB565() {     return new Format(GL_RGB, GL_UNSIGNED_SHORT_5_6_5); }  Format *Format::RGBA4444() {     return new Format(GL_RGB, GL_UNSIGNED_SHORT_4_4_4_4); }  Format *Format::RGB888() {     return new Format(GL_RGB, GL_UNSIGNED_BYTE); }  Format *Format::RGBA8888() {     return new Format(GL_RGBA, GL_UNSIGNED_BYTE); } } // namespace glcore 

3 JNI 相关

​ 本节主要介绍 glcore 框架在初始化过程中所依附的工具类,如 View 载体、字符串加载工具、图片加载工具等,它们与 JNI 密切相关,不便于进行跨平台迁移,因此不能将它们归入 glcore 框架中。

​ 如果读者对 JNI 不太熟悉,推荐阅读 → JNI环境搭建JNI基础语法

3.1 EGLSurfaceView

​ Android 中渲染内容需要 View 容器承载,有以下常用方案,详见 → 【OpenGL ES】不用GLSurfaceView,如何渲染图像

  • SurfaceView + SurfaceHolder.Callback
  • TextureView + TextureView.SurfaceTextureListener

​ 本框架采用 TextureView + TextureView.SurfaceTextureListener 方案,因为它在退后台后不会销毁 Surface,避免反复销毁和创建 Surface,稳定性更好。

​ Java 和 Native 中都有 EGLSurfaceView,它们是相互绑定的,前者为后者提供了 Surface、宽高、Renderer、Context 等属性,并管理了其生命周期。

​ EGLSurfaceView.java

package com.zhyan8.egldemo;  import android.content.Context; import android.graphics.SurfaceTexture; import android.util.Log; import android.view.Choreographer; import android.view.Surface; import android.view.TextureView;  import androidx.annotation.NonNull;  /**  * @author little fat sheep  * 承载EGL环境的View, 类比GLSurfaceView  */ public class EGLSurfaceView extends TextureView implements TextureView.SurfaceTextureListener {     private static final String TAG = "EGLSurfaceView";      private long mNativeHandle;     protected Surface mSurface;     private Choreographer mChoreographer = Choreographer.getInstance();      static {         System.loadLibrary("egl-native");     }      public EGLSurfaceView(Context context) {         super(context);         setSurfaceTextureListener(this);         mNativeHandle = nativeCreate();     }      public void setRenderer(long handle) {         Log.i(TAG, "setRenderer");         nativeSetRenderer(mNativeHandle, handle);     }      public void startRender() {         Log.i(TAG, "startRender");         mChoreographer.removeFrameCallback(mFrameCallback);         mChoreographer.postFrameCallback(mFrameCallback);     }      public void stopRender() {         Log.i(TAG, "stopRender");         mChoreographer.removeFrameCallback(mFrameCallback);     }      public void requestRender() {         mFrameCallback.doFrame(System.nanoTime());     }      @Override     public void onSurfaceTextureAvailable(@NonNull SurfaceTexture surface, int width, int height) {         Log.i(TAG, "onSurfaceTextureAvailable");         mSurface = new Surface(surface);         nativeSurfaceCreated(mNativeHandle, mSurface);         nativeSurfaceChanged(mNativeHandle, width, height);     }      @Override     public void onSurfaceTextureSizeChanged(@NonNull SurfaceTexture surface, int width, int height) {         Log.i(TAG, "onSurfaceTextureSizeChanged, width=" + width + ", height=" + height);         nativeSurfaceChanged(mNativeHandle, width, height);     }      @Override     public boolean onSurfaceTextureDestroyed(@NonNull SurfaceTexture surface) {         Log.i(TAG, "onSurfaceTextureDestroyed");         nativeSurfaceDestroyed(mNativeHandle);         return false;     }      @Override     public void onSurfaceTextureUpdated(@NonNull SurfaceTexture surface) {     }      @Override     protected void onDetachedFromWindow() {         super.onDetachedFromWindow();         Log.i(TAG, "onDetachedFromWindow");         stopRender();         setSurfaceTextureListener(null);         mSurface.release();         nativeDestroy(mNativeHandle);         mNativeHandle = 0;     }      private Choreographer.FrameCallback mFrameCallback = new Choreographer.FrameCallback() {         @Override         public void doFrame(long frameTimeNanos) {             mChoreographer.postFrameCallback(this);             nativeDrawFrame(mNativeHandle);         }     };      private native long nativeCreate();     private native void nativeSetRenderer(long viewHandle, long rendererHandle);     private native void nativeSurfaceCreated(long handle, Object surface);     private native void nativeSurfaceChanged(long handle, int width, int height);     private native void nativeDrawFrame(long handle);     private native void nativeSurfaceDestroyed(long handle);     private native void nativeDestroy(long handle); } 

​ jin_egl_surface_view.cpp

#include <android/log.h> #include <android/native_window.h> #include <android/native_window_jni.h> #include <jni.h>  #include "glcore/core.h"  #define LOG_TAG "JNIBrige_EGLSurfaceView" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  using namespace glcore;  static jlong nativeCreate(JNIEnv *env, jobject thiz) {     LOGI("nativeCreate");     EGLSurfaceView* view = new EGLSurfaceView();     return reinterpret_cast<jlong>(view); }  static void nativeSetRenderer(JNIEnv *env, jobject thiz, jlong viewHandle, jlong rendererHandle) {     LOGI("nativeSetRenderer");     EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(viewHandle);     EGLSurfaceView::Renderer* renderer = reinterpret_cast<EGLSurfaceView::Renderer*>(rendererHandle);     view->setRenderer(renderer); }  static void nativeSurfaceCreated(JNIEnv* env, jobject thiz, jlong handle, jobject surface) {     LOGI("nativeSurfaceCreated");     EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);     ANativeWindow* window = ANativeWindow_fromSurface(env, surface);     app->setWindow(window);     view->surfaceCreated(); }  static void nativeSurfaceChanged(JNIEnv* env, jobject thiz, jlong handle, jint width, jint height) {     LOGI("nativeSurfaceChanged");     EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);     view->surfaceChanged(width, height); }  static void nativeDrawFrame(JNIEnv* env, jobject thiz, jlong handle) {     EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);     view->drawFrame(); }  static void nativeSurfaceDestroyed(JNIEnv* env, jobject thiz, jlong handle) {     LOGI("nativeSurfaceDestroyed");     EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);     view->surfaceDestroy(); }  static void nativeDestroy(JNIEnv* env, jobject thiz, jlong handle) {     LOGI("nativeDestroy");     EGLSurfaceView* view = reinterpret_cast<EGLSurfaceView*>(handle);     delete view; }  static JNINativeMethod methods[] = {         { "nativeCreate", "()J", (void*) nativeCreate },         { "nativeSetRenderer", "(JJ)V", (void*) nativeSetRenderer },         { "nativeSurfaceCreated", "(JLjava/lang/Object;)V", (void*) nativeSurfaceCreated },         { "nativeSurfaceChanged", "(JII)V", (void*) nativeSurfaceChanged },         { "nativeDrawFrame", "(J)V", (void*) nativeDrawFrame },         { "nativeSurfaceDestroyed", "(J)V", (void*) nativeSurfaceDestroyed },         { "nativeDestroy", "(J)V", (void*) nativeDestroy }, };  static int registerNativeMethods(JNIEnv* env) {     int result = -1;     jclass clazz = env->FindClass("com/zhyan8/egldemo/EGLSurfaceView");     if (clazz != NULL) {         jint len = sizeof(methods) / sizeof(methods[0]);         if (env->RegisterNatives(clazz, methods, len) == JNI_OK) {             result = 0;         }     }     return result; }  jint JNI_OnLoad(JavaVM* vm, void* reserved) {     JNIEnv* env = NULL;     jint result = -1;     if (vm->GetEnv((void**) &env, JNI_VERSION_1_6) == JNI_OK) {         if (NULL != env && registerNativeMethods(env) == 0) {             result = JNI_VERSION_1_6;         }     }     return result; } 

3.2 StringUtils

​ StringUtils 用于加载顶点和片元着色器资源为字符串。

​ StringUtils.java

package com.zhyan8.egldemo;  import android.content.Context; import android.util.Log;  import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader;  /**  * 字符串工具类  * @author little fat sheep  */ public class StringUtils {     private static final String TAG = "BitmapUtils";      /**      * 根据资源路径读取字符串      * @param assetPath 资源路径, 如: "jelly_vert.glsl"      */     public static String loadStringFromAsset(Context context, String assetPath) {         String str = "";         try (InputStream inputStream = context.getAssets().open(assetPath)) {             str = loadString(inputStream);         } catch (IOException e) {             Log.w(TAG, "loadString error, message=" + e.getMessage());         }         return str;     }      /**      * 根据资源id读取字符串      * @param rawId 资源id, 如: "R.raw.vertex_shader"      */     public static String loadStringFromRaw(Context context, String rawId) {         if (rawId.startsWith("R.raw.")) {             rawId = rawId.substring(6); // Remove "R.raw."         }         int id = context.getResources().getIdentifier(rawId, "raw", context.getPackageName());         if (id == 0) {             Log.e(TAG, "loadBitmapFromRaw, resource is not found, rawId=" + rawId);             return null;         }         return loadStringFromRaw(context, id);     }      /**      * 根据资源id读取字符串      * @param rawId 资源id, 如: R.raw.vertex_shader      */     public static String loadStringFromRaw(Context context, int rawId) {         String str = "";         try (InputStream inputStream = context.getResources().openRawResource(rawId)) {             str = loadString(inputStream);         } catch (IOException e) {             Log.w(TAG, "loadString error, message=" + e.getMessage());         }         return str;     }      private static String loadString(InputStream inputStream) {         StringBuilder sb = new StringBuilder();         try (BufferedReader br = new BufferedReader(new InputStreamReader(inputStream))) {             String line;             while ((line = br.readLine()) != null) {                 sb.append(line).append("n");             }         } catch (IOException e) {             Log.w(TAG, "loadString error, message=" + e.getMessage());         }         return sb.toString();     } } 

​ string_utils.h

#pragma once  /**  * String工具类  * @author little fat sheep  */ class StringUtils { public:     /**      * 根据资源路径读取字符串      * @param asset 资源路径, 如: "vertex_shader.glsl"      */     static const char* loadStringFromAsset(const char* asset);      /**      * 根据资源id读取字符串      * @param rawId 资源id, 如: "R.raw.vertex_shader"      */     static const char* loadStringFromRaw(const char* rawId); }; 

​ string_utils.cpp

#include <jni.h>  #include "glcore/core.h" #include "jni/jni_refs.h" #include "jni/string_utils.h"  using namespace glcore;  const char* StringUtils::loadStringFromAsset(const char* asset) {     JNIEnv* env = app->jniEnv;     jobject context = app->context;     jstring assetStr = env->NewStringUTF(asset);     jclass clazz = env->FindClass("com/zhyan8/egldemo/StringUtils");     jmethodID method = LoadStringFromAssetMethodId(env);     jstring jstr = (jstring) env->CallStaticObjectMethod(clazz, method, context, assetStr);     const char* str = env->GetStringUTFChars(jstr, nullptr);     return str; }  const char* StringUtils::loadStringFromRaw(const char* rawId) {     JNIEnv* env = app->jniEnv;     jobject context = app->context;     jstring rawIdStr = env->NewStringUTF(rawId);     jclass clazz = env->FindClass("com/zhyan8/egldemo/StringUtils");     jmethodID method = LoadStringFromRawMethodId(env);     jstring jstr = (jstring) env->CallStaticObjectMethod(clazz, method, context, rawIdStr);     const char* str = env->GetStringUTFChars(jstr, nullptr);     return str; } 

3.3 BitmapUtils

​ BitmapUtils 用于加载图片资源为位图。

​ BitmapUtils.java

package com.zhyan8.egldemo;  import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.util.Log;  import java.io.IOException; import java.io.InputStream;  /**  * Bitmap工具类  * @author little fat sheep  */ public class BitmapUtils {     private static final String TAG = "BitmapUtils";      /**      * 根据资源路径读取bitmap      * @param assetPath 资源路径, 如: "textures/xxx.jpg"      */     public static Bitmap loadBitmapFromAsset(Context context, String assetPath) {         Bitmap bitmap = null;         try (InputStream inputStream = context.getAssets().open(assetPath)) {             BitmapFactory.Options options = getOptions();             bitmap = BitmapFactory.decodeStream(inputStream, null, options);         } catch (IOException e) {             Log.e(TAG, "loadBitmapFromAsset error, message=" + e.getMessage());         }         return bitmap;     }      /**      * 根据资源id读取bitmap      * @param rawId 资源id, 如: "R.raw.xxx"      */     public static Bitmap loadBitmapFromRaw(Context context, String rawId) {         if (rawId.startsWith("R.raw.")) {             rawId = rawId.substring(6); // Remove "R.raw."         }         int id = context.getResources().getIdentifier(rawId, "raw", context.getPackageName());         if (id == 0) {             Log.e(TAG, "loadBitmapFromRaw, resource is not found, rawId=" + rawId);             return null;         }         return loadBitmapFromRaw(context, id);     }      /**      * 根据资源id读取bitmap      * @param rawId 资源id, 如: R.raw.xxx      */     public static Bitmap loadBitmapFromRaw(Context context, int rawId) {         Bitmap bitmap = null;         try (InputStream inputStream = context.getResources().openRawResource(rawId)) {             BitmapFactory.Options options = getOptions();             bitmap = BitmapFactory.decodeStream(inputStream, null, options);         } catch (IOException e) {             Log.e(TAG, "loadBitmapFromRaw error, message=" + e.getMessage());         }         return bitmap;     }      private static BitmapFactory.Options getOptions() {         BitmapFactory.Options options = new BitmapFactory.Options();         options.inScaled = false;         return options;     } } 

​ bitmap_utils.h

#pragma once  #include <jni.h>  struct BitmapData {     void* buffer;     int width;     int height; };  /**  * Bitmap工具类  * @author little fat sheep  */ class BitmapUtils { public:     /**     * 根据资源路径读取bitmap     * @param asset 资源路径, 如: "textures/xxx.jpg"     */     static BitmapData* loadBitmapDataFromAsset(const char* asset);      /**      * 根据资源id读取bitmap      * @param rawId 资源id, 如: "R.raw.xxx"      */     static BitmapData* loadBitmapDataFromRaw(const char* rawId);  private:     static jobject loadBitmapFromAsset(JNIEnv* env, jobject context, const char* asset);     static jobject loadBitmapFromRaw(JNIEnv* env, jobject context, const char* rawId);     static BitmapData* getBitmapData(JNIEnv* env, jobject bitmap); }; 

​ bitmap_utils.cpp

#include <android/bitmap.h> #include <android/log.h> #include <string>  #include "glcore/core.h" #include "jni/bitmap_utils.h" #include "jni/jni_refs.h"  #define LOG_TAG "Native: BitmapUtils" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  using namespace glcore;  BitmapData* BitmapUtils::loadBitmapDataFromAsset(const char* asset) {     JNIEnv* env = app->jniEnv;     jobject context = app->context;     jobject bitmap = loadBitmapFromAsset(env, context, asset);     if (!bitmap) {         LOGI("loadBitmapDataFromAsset, bitmap is null: %s", asset);         return nullptr;     }     return getBitmapData(env, bitmap); }  BitmapData* BitmapUtils::loadBitmapDataFromRaw(const char* rawId) {     JNIEnv* env = app->jniEnv;     jobject context = app->context;     jobject bitmap = loadBitmapFromRaw(env, context, rawId);     if (!bitmap) {         LOGI("loadBitmapDataFromRaw, bitmap is null: %s", rawId);         return nullptr;     }     return getBitmapData(env, bitmap); }  jobject BitmapUtils::loadBitmapFromAsset(JNIEnv* env, jobject context, const char* asset) {     jstring assetStr = env->NewStringUTF(asset);     jclass clazz = env->FindClass("com/zhyan8/egldemo/BitmapUtils");     jmethodID method = LoadBitmapFromAssetMethodId(env);     jobject bitmap = env->CallStaticObjectMethod(clazz, method, context, assetStr);     return bitmap; }  jobject BitmapUtils::loadBitmapFromRaw(JNIEnv* env, jobject context, const char* rawId) {     jstring rawIdStr = env->NewStringUTF(rawId);     jclass clazz = env->FindClass("com/zhyan8/egldemo/BitmapUtils");     jmethodID method = LoadBitmapFromRawMethodId(env);     jobject bitmap = env->CallStaticObjectMethod(clazz, method, context, rawIdStr);     return bitmap; }  BitmapData* BitmapUtils::getBitmapData(JNIEnv* env, jobject bitmap) {     AndroidBitmapInfo info;     if (AndroidBitmap_getInfo(env, bitmap, &info))     {         LOGI("getBitmapData, failed to get bitmap info");         return nullptr;     }     void* buffer;     if (AndroidBitmap_lockPixels(env, bitmap, &buffer)) {         LOGI("getBitmapData, failed to lock bitmap pixels");         return nullptr;     }     BitmapData* data = new BitmapData();     data->buffer = buffer;     data->width = info.width;     data->height = info.height;     return data; } 

3.4 jin_ref

​ jni_ref 提供了 StringUtils 和 BitmaUtils 的类路径、函数名、函数签名等信息。

​ jni_ref.h

#pragma once  #include <jni.h>  jmethodID LoadBitmapFromAssetMethodId(JNIEnv* env); jmethodID LoadBitmapFromRawMethodId(JNIEnv* env); jmethodID LoadStringFromAssetMethodId(JNIEnv* env); jmethodID LoadStringFromRawMethodId(JNIEnv* env); jmethodID GetMethodId(JNIEnv* env, const char* method[]); jmethodID GetStaticMethodId(JNIEnv* env, const char* method[]); 

​ jni_ref.c

#include "jni/jni_refs.h"  const char* loadBitmapFromAssetTab[] = {         "com/zhyan8/egldemo/BitmapUtils",         "loadBitmapFromAsset",         "(Landroid/content/Context;Ljava/lang/String;)Landroid/graphics/Bitmap;" };  const char* loadBitmapFromRawTab[] = {         "com/zhyan8/egldemo/BitmapUtils",         "loadBitmapFromRaw",         "(Landroid/content/Context;Ljava/lang/String;)Landroid/graphics/Bitmap;" };  const char* loadStringFromAssetTab[] = {         "com/zhyan8/egldemo/StringUtils",         "loadStringFromAsset",         "(Landroid/content/Context;Ljava/lang/String;)Ljava/lang/String;" };  const char* loadStringFromRawTab[] = {         "com/zhyan8/egldemo/StringUtils",         "loadStringFromRaw",         "(Landroid/content/Context;Ljava/lang/String;)Ljava/lang/String;" };  jmethodID LoadBitmapFromAssetMethodId(JNIEnv* env) {     return GetStaticMethodId(env, loadBitmapFromAssetTab); }  jmethodID LoadBitmapFromRawMethodId(JNIEnv* env) {     return GetStaticMethodId(env, loadBitmapFromRawTab); }  jmethodID LoadStringFromAssetMethodId(JNIEnv* env) {     return GetStaticMethodId(env, loadStringFromAssetTab); }  jmethodID LoadStringFromRawMethodId(JNIEnv* env) {     return GetStaticMethodId(env, loadStringFromRawTab); }  jmethodID GetMethodId(JNIEnv* env, const char* method[]) {     jclass clazz = env->FindClass(method[0]);     return env->GetMethodID(clazz, method[1], method[2]); }  jmethodID GetStaticMethodId(JNIEnv* env, const char* method[]) {     jclass clazz = env->FindClass(method[0]);     return env->GetStaticMethodID(clazz, method[1], method[2]); } 

4 应用

​ 本节将基于 glcore 框架写一个色散特效叠加果冻特效的 Demo,体验一下 glcore 的便捷之处。

4.1 MyRenderer

​ my_renderer.h

#pragma once  #include "glcore/core.h" #include "dispersion_effect.h" #include "jelly_effect.h"  using namespace glcore;  /**  * 自定义渲染器  * @author little fat sheep  */ class MyRenderer : public EGLSurfaceView::Renderer { private:     DispersionEffect* m_dispersionEffect;     JellyEffect* m_jellyEffect;     long m_startTime = 0;     float m_runTime = 0.0f;  public:     MyRenderer();     ~MyRenderer() override;     void onSurfaceCreated() override;     void onSurfaceChanged(int width, int height) override;     void onDrawFrame() override;  private:     long getTimestamp(); }; 

​ my_renderer.cpp

#include <android/log.h> #include <chrono>  #include "custom/my_renderer.h"  #define LOG_TAG "Native: MyRenderer" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  using namespace glcore; using namespace std::chrono;  MyRenderer::MyRenderer() {     LOGI("init");     m_dispersionEffect = new DispersionEffect();     m_jellyEffect = new JellyEffect();     m_jellyEffect->setTexAction(m_dispersionEffect); }  MyRenderer::~MyRenderer() {     LOGI("destroy");     delete m_dispersionEffect;     delete m_jellyEffect; }  void MyRenderer::onSurfaceCreated() {     LOGI("onSurfaceCreated");     m_dispersionEffect->onCreate();     m_jellyEffect->onCreate();     GL_CALL(glClearColor(0.1f, 0.2f, 0.3f, 0.4f));     m_startTime = getTimestamp(); }  void MyRenderer::onSurfaceChanged(int width, int height) {     LOGI("onSurfaceChanged, width: %d, height: %d", width, height);     GL_CALL(glViewport(0, 0, width, height));     m_dispersionEffect->onResize(width, height);     m_jellyEffect->onResize(width, height); }  void MyRenderer::onDrawFrame() {     m_runTime = (getTimestamp() - m_startTime) / 1000.0f;     GL_CALL(glClear(GL_COLOR_BUFFER_BIT));     m_dispersionEffect->onDraw(m_runTime);     m_jellyEffect->onDraw(m_runTime); }  long MyRenderer::getTimestamp() {     auto now = std::chrono::system_clock::now(); // 获取当前时间     auto duration = now.time_since_epoch(); // 转换为自纪元以来的时间     return duration_cast<milliseconds>(duration).count(); } 

4.2 DispersionEffect

​ DispersionEffect 是色散特效。

​ dispersion_effect.h

#pragma once  #include "glcore/core.h"  using namespace glcore;  /**  * 色散特效  * @author little fat sheep  */ class DispersionEffect: public TextureAction { private:     ShaderProgram* m_program;     Mesh* m_mesh;     GLTexture* m_glTexture;     FrameBufferObject* m_fbo;  public:     DispersionEffect();     ~DispersionEffect() override;     void onCreate();     void onResize(int width, int height);     void onDraw(float runtime);     void bind(ShaderProgram* shader) override;  private:     void createProgram();     void createTexture(); }; 

​ dispersion_effect.cpp

#include <android/log.h>  #include "custom/dispersion_effect.h" #include "jni/bitmap_utils.h" #include "jni/string_utils.h"  #define LOG_TAG "Native: DispersionEffect" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  using namespace glcore;  DispersionEffect::DispersionEffect() {     LOGI("init"); }  DispersionEffect::~DispersionEffect() {     LOGI("destroy");     delete m_program;     delete m_mesh;     delete m_glTexture;     delete m_fbo; }  void DispersionEffect::onCreate() {     LOGI("onCreate");     createProgram();     createTexture();     m_mesh = MeshUtils::createRect(true);     m_fbo = new FrameBufferObject(Format::RGBA8888(), app->width, app->height, false, false); }  void DispersionEffect::onResize(int width, int height) {     LOGI("onResize, width: %d, height: %d", width, height); }  void DispersionEffect::onDraw(float runtime) {     m_fbo->begin();     m_program->bind();     m_program->setUniformf("u_time", runtime);     m_program->setUniformf("u_aspect", app->aspect);     m_glTexture->bind(m_program);     m_mesh->render(m_program);     m_fbo->end(); }  void DispersionEffect::bind(ShaderProgram* shader) {     m_fbo->bind(shader); }  void DispersionEffect::createProgram() {     LOGI("createProgram");     const char* vertexCode = StringUtils::loadStringFromAsset("dispersion_vert.glsl");     const char* fragmentCode = StringUtils::loadStringFromAsset("dispersion_frag.glsl");     m_program = new ShaderProgram(vertexCode, fragmentCode); }  void DispersionEffect::createTexture() {     LOGI("createTexture");     BitmapData* data = BitmapUtils::loadBitmapDataFromAsset("girl.jpg");     m_glTexture = new GLTexture(data->buffer, data->width, data->height); } 

​ dispersion_vert.glsl

attribute vec4 a_position; attribute vec2 a_texCoord0;  varying vec2 v_texCoord;  void main() {      gl_Position = a_position;      v_texCoord = a_texCoord0; } 

​ dispersion_frag.glsl

precision highp float;  uniform float u_aspect; uniform float u_time; uniform sampler2D u_texture;  varying vec2 v_texCoord;  vec2 getOffset() { // 偏移函数      float time = u_time * 1.5;      vec2 dire = vec2(sin(time), cos(time));      float strength = sin(u_time * 2.0) * 0.004;      return dire * strength * vec2(1.0, 1.0 / u_aspect); }  void main() {      vec2 offset = getOffset();      vec4 color = texture2D(u_texture, v_texCoord);      color.r = texture2D(u_texture, v_texCoord + offset).r;      color.b = texture2D(u_texture, v_texCoord - offset).b;      gl_FragColor = color; } 

4.3 JellyEffect

​ JellyEffect 是果冻特效。

​ jelly_effect.h

#pragma once  #include "glcore/core.h"  using namespace glcore;  /**  * 果冻特效  * @author little fat sheep  */ class JellyEffect { private:     ShaderProgram* m_program;     Mesh* m_mesh;     TextureAction* m_texAction;  public:     JellyEffect();     ~JellyEffect();     void setTexAction(TextureAction* texAction);     void onCreate();     void onResize(int width, int height);     void onDraw(float runtime);  private:     void createProgram(); }; 

​ jelly_effect.cpp

#include <android/log.h>  #include "custom/jelly_effect.h" #include "jni/bitmap_utils.h" #include "jni/string_utils.h"  #define LOG_TAG "Native: JellyEffect" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)  using namespace glcore;  JellyEffect::JellyEffect() {     LOGI("init"); }  JellyEffect::~JellyEffect() {     LOGI("destroy");     delete m_program;     delete m_mesh; }  void JellyEffect::setTexAction(TextureAction* texAction) {     m_texAction = texAction; }  void JellyEffect::onCreate() {     LOGI("onCreate");     createProgram();     m_mesh = MeshUtils::createRect(false); }  void JellyEffect::onResize(int width, int height) {     LOGI("onResize, width: %d, height: %d", width, height); }  void JellyEffect::onDraw(float runtime) {     m_program->bind();     m_program->setUniformf("u_time", runtime);     m_program->setUniformf("u_aspect", app->aspect);     m_texAction->bind(m_program);     m_mesh->render(m_program); }  void JellyEffect::createProgram() {     LOGI("createProgram");     const char* vertexCode = StringUtils::loadStringFromAsset("jelly_vert.glsl");     const char* fragmentCode = StringUtils::loadStringFromAsset("jelly_frag.glsl");     m_program = new ShaderProgram(vertexCode, fragmentCode); } 

​ jelly_vert.glsl

attribute vec4 a_position; attribute vec2 a_texCoord0;  varying vec2 v_texCoord;  void main() {      gl_Position = a_position;      v_texCoord = a_texCoord0; } 

​ jelly_frag.glsl

precision highp float;  uniform float u_aspect; uniform float u_time; uniform sampler2D u_texture;  varying vec2 v_texCoord;  vec2 fun(vec2 center, vec2 uv) { // 畸变函数      vec2 dire = normalize(uv - center);      float dist = distance(uv, center);      vec2 uv1 = uv + sin(dist * 2.2 + u_time * 3.5) * 0.025;      return uv1; }  void main() {      vec2 uv = vec2(v_texCoord.x, v_texCoord.y / u_aspect);      vec2 center = vec2(0.5, 0.5 / u_aspect);      vec2 uv1 = fun(center, uv);      uv1.y *= u_aspect;      gl_FragColor = texture2D(u_texture, uv1); } 

4.4 运行效果

​ 运行效果如下,可以看到叠加了色散和果冻特效。

【OpenGL ES】在Android上手撕一个mini版的渲染框架

​ 声明:本文转自【OpenGL ES】在Android上手撕一个mini版的渲染框架

发表评论

评论已关闭。

相关文章