Elasticsearch学习系列一(部署和配置IK分词器)

Elasticsearch简介

Elasticsearch是什么?

Elaticsearch简称为ES,是一个开源的可扩展的分布式的全文检索引擎,它可以近乎实时的存储、检索数据。本身扩展性很好,可扩展到上百台服务器,处理PB级别的数据。ES使用Java开发并使用Lucene作为其核心来实现索引和搜索的功能,但是它通过简单的RestfulAPI和javaAPI来隐藏Lucene的复杂性,从而让全文搜索变得简单。

起源:Shay Banon。2004年失业,陪老婆去伦敦学习厨师。失业在家帮老婆写一个菜谱搜索引擎。封装了lucene,做出了开源项目compass。找到工作后,做分布式高性能项目,再封装compass,写出了elasticsearch,使得lucene支持分布式。现在是Elasticsearch创始人兼Elastic首席执行官

Elasticsearch的功能

  • 分布式的搜索引擎

分布式:Elasticsearch自动将海量数据分散到多台服务器上去存储和检索

  • 全文检索

提供模糊搜索等自动度很高的查询方式,并进行相关性排名,高亮等功能

  • 数据分析引擎(分组聚合)

电商网站,最近一周笔记本电脑这种商品销量排名top10的商家有哪些?新闻网站,最近1个月访问量排名top3的新闻板块是哪些

  • 对海量数据进行近实时的处理

海量数据的处理:因为是分布式架构,Elasticsearch可以采用大量的服务器去存储和检索数据,自然而然就可以实现海量数据的处理。近实时指的是Elasticsearch可以实现秒级别的数据搜索和分析

Elasticsearch的特点

  1. 安装方便:没有其他依赖,下载后安装非常方便;只用修改几个参数就可以搭建起来一个集群
  2. JSON:输入/输出格式为 JSON,意味着不需要定义 Schema,快捷方便
  3. RESTful:基本所有操作 ( 索引、查询、甚至是配置 ) 都可以通过 HTTP 接口进行
  4. 分布式:节点对外表现对等(每个节点都可以用来做入口)加入节点自动负载均衡
  5. 多租户:可根据不同的用途分索引,可以同时操作多个索引
  6. 支持超大数据:可以扩展到PB级的结构化和非结构化数据海量数据的近实时处理

使用场景

  1. 搜索类场景

如电商网站、招聘网站、新闻资讯类网站、各种app内的搜索。

  1. 日志分析类场景

经典的ELK组合(Elasticsearch/Logstash/Kibana),可以完成日志收集,日志存储,日志分析查询界面基本功能,目前该方案的实现很普及,大部分企业日志分析系统使用了该方案。

  1. 数据预警平台及数据分析场景

例如电商价格预警,在支持的电商平台设置价格预警,当优惠的价格低于某个值时,触发通知消息,通知用户购买。数据分析常见的比如分析电商平台销售量top 10的品牌,分析博客系统、头条网站top10关注度、评论数、访问量的内容等等。

  1. 商业BI(Business Intelligence)系统

比如大型零售超市,需要分析上一季度用户消费金额,年龄段,每天各时间段到店人数分布等信息,输出相应的报表数据,并预测下一季度的热卖商品,根据年龄段定向推荐适宜产品。Elasticsearch执行数据分析和挖掘,Kibana做数据可视化。

常见案例

  • 维基百科、百度百科:有全文检索、高亮、搜索推荐功能
  • stack overflow:有全文检索,可以根据报错关键信息,去搜索解决方法。
  • github:从上千亿行代码中搜索你想要的关键代码和项目。
  • 日志分析系统:各企业内部搭建的ELK平台

Elasticsearch VS Solr

  • Lucene

Lucene是Apache基金会维护的一套完全使用Java编写的信息搜索工具包(Jar包),它包含了索引结构、读写索引工具、相关性工具、排序等功能,因此在使用Lucene时仍需要我们自己进一步开发搜索引擎系统,例如数据获取、解析、分词等方面的东西。

注意:Lucene只是一个框架,我们需要在Java程序中集成它再使用。而且需要很多的学习才能明白它是如何运行的,熟练运用Lucene非常复杂。

  • Solr

Solr是一个有HTTP接口的基于Lucene的查询服务器,是一个搜索引擎系统,封装了很多Lucene细节,Solr可以直接利用HTTP GET/POST请求去查询,维护修改索引

  • Elasticsearch

Elasticsearch也是一个建立在全文搜索引擎 Apache Lucene基础上的搜索引擎。采用的策略是分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。

总结:

  1. Solr和Es都是基于Lucene实现的
  2. Solr利用Zookeeper进行分布式管理,而Es自身带有分布式协调管理功能
  3. Solr比Es实现更全面,功能更多,而Es本身更注重于核心功能,高级功能多由第三方插件提供
  4. Solr在传统的搜索应用中表现比Es好,而Es在实时搜索应用方面比Solr好
  5. Solr查询快,但更新索引时慢,可用于电商等查询多的应用;而Es建立索引快,更实时
  6. 随着数据量的增加,Solr的搜索效率会变得更低,而Es却没有明显变化

安装部署ES

  1. 下载es,并解压

https://www.elastic.co/cn/downloads/past-releases/elasticsearch-7-3-0

  1. 编辑vim config/elasticsearch.yml,修改下面的4个地方。network.host对应自己机器的ip
node.name: node-1 network.host: 192.168.211.136 # # Set a custom port for HTTP: # http.port: 9200 cluster.initial_master_nodes: ["node-1"] 
  1. ++按需++修改vim config/jvm.options内存设置

可以调整里面的Xms和Xmx
3. 添加es用户(es默认root用户无法启动)

useradd estest  #修改密码 passwd estest 
  1. 赋予estest用户一个目录权限
chown -R estest /usr/elasticsearch/ 
  1. 修改/etc/sysctl.conf
#末尾添加 vm.max_map_count=655360 

修改完执行sysctl -p,让其生效

sysctl -p 
  1. 修改/etc/security/limits.conf
#末尾添加 *        soft  nofile      65536 *        hard  nofile      65536 *        soft  nproc      4096 *        hard  nproc      4096 
  1. 修改/etc/security/limits.d/20-nproc.conf
#末尾添加 *   hard  nproc 4096 

重新登录或重启服务器使配置生效。

  1. 启动es
#切换用户 su estest #启动 bin/elasticsearch 
  1. 测试

http://192.168.56.115:9200/

Elasticsearch学习系列一(部署和配置IK分词器)

测试ok,安装成功!!!

安装配置Kibana

什么是Kibana?

Kibana是一个基于Node.js的Elasticsearch索引库数据统计工具,可以利用Elasticsearch的聚合功能,生成各种图表,如柱状图、线状图、饼图等。而且还提供了操作Elasticsearch索引数据的控制台,并且提供了一定的API提示,非常有利于我们学习Elasticsearch的语法。

安装Kibana

  1. 下载Kibana

https://www.elastic.co/cn/downloads/kibana

root账户下操作:

  1. 解压
  2. 改变kibana目录权限、设置访问权限
chown -R estest /usr/local/kibana-7.3.0-linux-x86_64 chmod -R 777 /usr/local/kibana-7.3.0-linux-x86_64 
  1. 修改配置文件
server.port: 5601 server.host: "0.0.0.0" # The URLs of the Elasticsearch instances to use for all your queries. elasticsearch.hosts: ["http://192.168.211.136:9200"] 
  1. 启动
su estest bin/kibana 

访问地址: http://192.168.56.115:5601
Elasticsearch学习系列一(部署和配置IK分词器)

后续的操作我们可以使用kibana来访问es:
Elasticsearch学习系列一(部署和配置IK分词器)

Es集成IK分词器

KAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本。最初,它是以开源项目Lucene为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为面向Java的公用分词组件,独立于
Lucene项目,同时提供了对Lucene的默认优化实现。

插件安装方式

  1. 在es的bin目录下执行以下命令,es插件管理器会自动帮我们安装,然后等待安装完成。
bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.3.0/elasticsearch-analysis-ik-7.3.0.zip 

安装包安装方式

  1. 下载 https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.3.0/elasticsearch-analysis-ik-7.3.0.zip

  2. 在es安装目录下的plugins目录下新建analysis-ik目录

#新建analysis-ik文件夹 mkdir analysis-ik #切换至 analysis-ik文件夹下 cd analysis-ik #上传资料中的 elasticsearch-analysis-ik-7.3.0.zip #解压 unzip elasticsearch-analysis-ik-7.3.3.zip #解压完成后删除zip rm -rf elasticsearch-analysis-ik-7.3.0.zip 
  1. 重启es

测试分词器

IK分词器有两种分词模式:ik_max_word和ik_smart模式

  • ik_max_word:将文本做最细粒度的拆分
  • ik_smart:将文本做最粗力度的拆分

示例:

POST _analyze { "analyzer": "ik_max_word", "text": "南京市长江大桥" } 

得到结果如下:

{   "tokens" : [     {       "token" : "南京市",       "start_offset" : 0,       "end_offset" : 3,       "type" : "CN_WORD",       "position" : 0     },     {       "token" : "南京",       "start_offset" : 0,       "end_offset" : 2,       "type" : "CN_WORD",       "position" : 1     },     {       "token" : "市长",       "start_offset" : 2,       "end_offset" : 4,       "type" : "CN_WORD",       "position" : 2     },     {       "token" : "长江大桥",       "start_offset" : 3,       "end_offset" : 7,       "type" : "CN_WORD",       "position" : 3     },     {       "token" : "长江",       "start_offset" : 3,       "end_offset" : 5,       "type" : "CN_WORD",       "position" : 4     },     {       "token" : "大桥",       "start_offset" : 5,       "end_offset" : 7,       "type" : "CN_WORD",       "position" : 5     }   ] }  

扩展词典

分词结果没有我们想要的时候,可以自己扩展。如:南京市长江大桥,它的语义是南京市市长叫“江大桥”。

  1. 进入到 config/analysis-ik/(插件命令安装方式)或plugins/analysis-ik/config(安装包安装方式) 目录下, 新增自定义词典(文件名随意)
vim my_ext_dict.dic 

内容输入:江大桥
2. 将我们的自定义扩展文件配置上

vim IKAnalyzer.cfg.xml 
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties>         <comment>IK Analyzer 扩展配置</comment>         <!--用户可以在这里配置自己的扩展字典 -->         <entry key="ext_dict">my_ext_dict.dic</entry>          <!--用户可以在这里配置自己的扩展停止词字典-->         <entry key="ext_stopwords"></entry>         <!--用户可以在这里配置远程扩展字典 -->         <!-- <entry key="remote_ext_dict">words_location</entry> -->         <!--用户可以在这里配置远程扩展停止词字典-->         <!-- <entry key="remote_ext_stopwords">words_location</entry> --> </properties>  
  1. 配置完后重启es

停用词配置同理。

同义词典使用

同一个东西有不同的词语来表示。我们搜索的时候期望输入"土豆",能搜出"洋芋",输入"西红柿"能搜出"番茄"等等。

Elasticsearch 自带一个名为 synonym 的同义词 filter。为了能让 IK 和 synonym 同时工作,我们需要定义新的analyzer,用IK做tokenizer,synonym做filter。

  1. config/analysis-ik目录下创建synonym.txt文件,输入一些同义词
西红柿,番茄 
  1. 创建索引时使用同义词配置
{     "settings":{         "analysis":{             "filter":{                 "word_sync":{                     "type":"synonym",                     "synonyms_path":"analysis-ik/synonym.txt"                 }             },             "analyzer":{                 "ik_sync_max_word":{                     "filter":[                         "word_sync"                     ],                     "type":"custom",                     "tokenizer":"ik_max_word"                 },                 "ik_sync_smart":{                     "filter":[                         "word_sync"                     ],                     "type":"custom",                     "tokenizer":"ik_smart"                 }             }         }     },     "mappings":{         "properties":{             "字段名":{                 "type":"字段类型",                 "analyzer":"ik_sync_smart",                 "search_analyzer":"ik_sync_smart"             }         }     } }   

以上配置定义了ik_sync_max_word和ik_sync_smart这两个新的analyzer,对应IK的ik_max_word和ik_smart两种分词策略。

  1. 搜索时指定分词器ik_sync_max_word或ik_sync_smart即可拥有同义词功能。

示例如下:

  1. 建索引
PUT /test-synonym {     "settings":{         "analysis":{             "filter":{                 "word_sync":{                     "type":"synonym",                     "synonyms_path":"analysis-ik/synonym.txt"                 }             },             "analyzer":{                 "ik_sync_max_word":{                     "filter":[                         "word_sync"                     ],                     "type":"custom",                     "tokenizer":"ik_max_word"                 },                 "ik_sync_smart":{                     "filter":[                         "word_sync"                     ],                     "type":"custom",                     "tokenizer":"ik_smart"                 }             }         }     },     "mappings":{         "properties":{             "name":{                 "type":"text",                 "analyzer":"ik_sync_smart",                 "search_analyzer":"ik_sync_smart"             }         }     } }  
  1. 插入数据
POST /test-synonym/_doc/1 {   "name":"我喜欢吃番茄" } 
  1. 搜索
POST /test-synonym/_search {   "query":{     "match":{       "name":"西红柿"     }   } } 

发表评论

相关文章