Camel介绍
CAMEL 是一个开源社区,致力于探索代理的扩展规律。我们相信,在大规模研究这些代理可以提供对其行为、能力和潜在风险的宝贵见解。为了促进该领域的研究,我们实现了并支持各种类型的代理、任务、提示、模型和模拟环境。
CAMEL :找到智能体的扩展规律。第一个也是最好的多智能体框架。
CAMEL 框架设计原则
可演化性
该框架通过生成数据并与环境交互,使多智能体系统能够持续进化。这种进化可以由可验证奖励驱动的强化学习或监督学习驱动。
规模性
该框架旨在支持百万级代理的系统,确保在大规模情况下实现高效的协调、通信和资源管理。
有状态性
代理保持状态记忆,使它们能够进行多步与环境的交互,并高效地应对复杂的任务。
代码即提示
每一行代码和注释都作为代理的提示。代码应编写得清晰易读,确保人类和代理都能有效解读。
GitHub地址:https://github.com/camel-ai/camel。

Camel初探
我使用从源代码中使用 uv 这种方式进行安装。
git clone https://github.com/camel-ai/camel.git
cd camel
如果没安装uv需要安装。
pip install uv
创建一个虚拟环境。
uv venv .venv --python=3.10
激活虚拟环境。
.venvScriptsactivate
安装CAMEL及其依赖。
uv pip install -e ".[all, dev, docs]"
开发者可以安装pre-commit hooks 与 mypy。
uv pip install pre-commit mypy
pre-commit install
现在先随便跑个例子看看。
我想要使用硅基流动的模型,就可以在.env文件中这样写:
Silicon_Model_ID="Qwen/Qwen2.5-72B-Instruct" SiliconCloud_API_KEY="你的api_key" SiliconCloud_Base_URL="https://api.siliconflow.cn/v1"
我跑的例子是这个:camelexamplesai_societyrole_playing_multi_lingual.py
将代码修改为如下的形式即可:
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= from colorama import Fore from camel.societies import RolePlaying from camel.utils import print_text_animated def main(model=None) -> None: task_prompt = "Develop a trading bot for the stock market" role_play_session = RolePlaying( assistant_role_name="Python Programmer", assistant_agent_kwargs=dict(model=model), user_role_name="Stock Trader", user_agent_kwargs=dict(model=model), task_prompt=task_prompt, with_task_specify=True, task_specify_agent_kwargs=dict(model=model), output_language="Chinese", # Arabic, French, Spanish, ... ) print( Fore.GREEN + f"AI Assistant sys message:n{role_play_session.assistant_sys_msg}n" ) print( Fore.BLUE + f"AI User sys message:n{role_play_session.user_sys_msg}n" ) print(Fore.YELLOW + f"Original task prompt:n{task_prompt}n") print( Fore.CYAN + "Specified task prompt:" + f"n{role_play_session.specified_task_prompt}n" ) print(Fore.RED + f"Final task prompt:n{role_play_session.task_prompt}n") chat_turn_limit, n = 50, 0 input_msg = role_play_session.init_chat() while n < chat_turn_limit: n += 1 assistant_response, user_response = role_play_session.step(input_msg) if assistant_response.terminated: print( Fore.GREEN + ( "AI Assistant terminated. Reason: " f"{assistant_response.info['termination_reasons']}." ) ) break if user_response.terminated: print( Fore.GREEN + ( "AI User terminated. " f"Reason: {user_response.info['termination_reasons']}." ) ) break print_text_animated( Fore.BLUE + f"AI User:nn{user_response.msg.content}n" ) print_text_animated( Fore.GREEN + "AI Assistant:nn" f"{assistant_response.msg.content}n" ) if "CAMEL_TASK_DONE" in user_response.msg.content: break input_msg = assistant_response.msg if __name__ == "__main__": from camel.models import ModelFactory from camel.types import ModelPlatformType, ModelType import pathlib import os from dotenv import load_dotenv base_dir = pathlib.Path(__file__).parent.parent.parent env_path = base_dir / ".env" load_dotenv(dotenv_path=str(env_path)) modeltype = os.getenv("Silicon_Model_ID") api_key = os.getenv("SiliconCloud_API_KEY") base_url = os.getenv("SiliconCloud_Base_URL") siliconcloud_model = ModelFactory.create( model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL, model_type=modeltype, api_key=api_key, url=base_url, model_config_dict={"temperature": 0.4, "max_tokens": 4096}, ) main(siliconcloud_model)
运行效果:

算是把环境搭建好了。
现在就可以开始学习Camel这个多智能体框架了。