引言:AI时代下的聊天机器人开发范式演进
在生成式AI技术爆发的当下,基于大语言模型(LLM)的聊天机器人开发已形成标准化技术链路。本文将结合DeepSeek API与微软Semantic Kernel框架,以C#语言实战演示从基础API调用到高级框架集成的完整开发流程。
环境准备与基础配置
- .NET 9 SDK
- Visual Studio 2022或VSCode
- DeepSeek API密钥 官网申请
DeepSeek API基础调用
DeepSeek API的Endpoint地址为:https://api.deepseek.com/chat/completions,相关文档可查看官方文档
- 单轮对话实现
代码示例
public async Task<ResponseBody> GetChatMessageContentsAsync(CancellationToken cancellationToken = new CancellationToken()) { var client = new HttpClient(); var request = new HttpRequestMessage(HttpMethod.Post, _builder.Endpoint); request.Headers.Add("Accept", "application/json"); request.Headers.Add("Authorization", $"Bearer {_builder.ApiKey}"); _body.Stream = false; var content = new StringContent(_body.SerializeObject(), null, "application/json"); request.Content = content; var response = await client.SendAsync(request, cancellationToken); var responseBody = await response.Content.ReadAsStringAsync(cancellationToken); return JsonConvert.DeserializeObject<ResponseBody>(responseBody) ?? new ResponseBody(); }
- 流式响应处理
代码示例
public async IAsyncEnumerable<ResponseBody> GetStreamingChatMessageContentsAsync([EnumeratorCancellation] CancellationToken cancellationToken = new CancellationToken()) { var client = new HttpClient(); var request = new HttpRequestMessage(HttpMethod.Post, _builder.Endpoint); request.Headers.Add("Accept", "application/json"); request.Headers.Add("Authorization", $"Bearer {_builder.ApiKey}"); _body.Stream = true; var content = new StringContent(_body.SerializeObject(), null, "application/json"); request.Content = content; var response = await client.SendAsync(request, cancellationToken); var stream = await response.Content.ReadAsStreamAsync(cancellationToken); var reader = new StreamReader(stream); while (!reader.EndOfStream) { var line = await reader.ReadLineAsync(cancellationToken); if (string.IsNullOrEmpty(line) || line.StartsWith(":")) continue; if (line.StartsWith("data: ")) { var jsonData = line["data: ".Length ..]; if (jsonData == "[DONE]") break; yield return JsonConvert.DeserializeObject<ResponseBody>(jsonData) ?? new ResponseBody(); } } }
Semantic Kernel框架集成
Semantic Kernel是一种轻型开源开发工具包,可用于轻松生成 AI 代理并将最新的 AI 模型集成到 C#、Python 或 Java 代码库中。 它充当一个高效的中间件,可实现企业级解决方案的快速交付。
DeepSeek API与Semantic Kernel框架集成,可快速实现基于大语言模型的聊天机器人开发。由于DeepSeek API与OpenAI API的兼容性,因此DeepSeek API与Semantic Kernel框架的集成非常简单。只需使用OpenAI的连接器,即可快速实现DeepSeek API与Semantic Kernel框架的集成。
- NuGet包安装
dotnet add package Microsoft.SemanticKernel
- Semantic Kernel初始化
var openAIClientCredential = new ApiKeyCredential(apiKey); var openAIClientOption = new OpenAIClientOptions { Endpoint = new Uri("https://api.deepseek.com"), }; var builder = Kernel.CreateBuilder() .AddOpenAIChatCompletion(modelId, new OpenAIClient(openAIClientCredential, openAIClientOption)); var kernel = builder.Build();
- 聊天机器人开发
var chatCompletionService = kernel.GetRequiredService<IChatCompletionService>(); Console.WriteLine("😀User >> "+ chatHistory.Last().Content); var result = chatCompletionService.GetStreamingChatMessageContentsAsync( chatHistory ); Console.Write("👨Assistant >> "); await foreach (var item in result) { Thread.Sleep(200); Console.Write(item.Content); }