C++函数模板

C++函数模板

template<typename T> void Swap(T &a ,T &b) {     T temp;     temp = a;     a = b;     b = temp; } 

在使用模板函数时,编译器根据实际的类型生成相应的函数定义。

重载的模板

并非所有的类型都使用相同的算法,可以像重载常规函数那样重载模板函数定义。

template<typename T> void Swap(T &a ,T &b); //#1  template<typename T> void Swap(T *a ,T *b,int n);//#2 最后一个参数是具体类型  int main() {     int i =10,j=20;     Swap(i,j);//使用#1          const int Lim = 8;     int d1[Lim]={0,1,2,3,4,5,6,7};     int d2[Lim]={7,6,5,4,3,2,1,0};     Swap(d1,d2,Lim);//使用#2 } template<typename T> void Swap(T &a ,T &b) {     T temp;     temp = a;     a = b;     b = temp; }  template<typename T> void Swap(T *a ,T *b,int n) {     T temp;     for(int i=0;i<n;i++)     {         temp =a[i];         a[i]=b[i];         b[i]=temp;     } } 

模板局限性

某些时候,类型T的相应操作只适用于数组,如果T为结构体则模板函数便不成立

同样,如if(a>b),如果T为结构,则>便不成立

解决方案:

  1. 重载运算符号
  2. 为特定类型提供具体化模板定义

显示具体化

当编译器找到与函数调用匹配的具体化定义时,将使用该定义,不再寻找模板。

  • 对于给定的函数名,可以有非模板函数、模板函数和显示具体化模板函数以及各自的重载版本。
  • 显示具体化的原型和定义以template<>开头,并通过名称来指出类型
  • 调用顺序是:非模板函数>具体化模板函数>模板函数
void Swap(job& ,job&);  template <typename T> void Swap(T&,T&);  template<> void Swap<job>(job& ,job&);//显示具体化 //Swap<job>中<job>是可选的,因为函数的参数类型表明,这是job的一个具体化,所以也可以这样写: template<> void Swap(job& ,job&); 

实例化和具体化

注意:函数模板并不会生成函数定义,他只是生成一个用于生成函数定义的方案,编译器使用模板为特定的类型生成函数定义时,得到的是模板实例。

template<typename T> void Swap(T &a ,T &b);  int a =10,b=20; Swap(a,b);//因为提供了int类型的参数,所以自动生成了int类型的模板实例。这样是==隐式实例化== //也可以直接命令编译器创建特定的实例 //显示实例化 template void Swap<int>(int &,int &);//使用Swap()模板生成int类型的函数定义  //显示具体化 template<> void Swap<int>(int& ,int&); template<> void Swap(int& ,int&); //区别在于:具体化是不使用Swap()模板函数生成函数定义,而是使用专门为int类型显示定义的函数定义 //简单的理解,具体化是对函数的声明,而实例化是对模板函数的使用 
template<typename T> T Add(T a,T b) {     return a+b; }  int m=6; double x=10.5; Add<double>(x,m); //与Add(x,m)不匹配,因为一个是int一个是double 				  //通过Add<double>实例化,可强制将m转为double  //但是同样的对Swap便不能成功,因为Swap中使用的是引用类型 Swap<double>(m,x);//double& 不能指向int 
//使用案例 template <typename T> void Swap(T &,T &);  template<> void Swap<job>(job&,job&);//具体化 int mian() {     template void Swap<char>(char& ,char&);          short a,b;     Swap(a,b);//隐式实例化          job n,m;     Swap(n,m);//显示具体化          char g,h;     Swap(g,h);//显示实例化 } 

模板函数类型的确定

template<class T1,class T2> void fun(T1 x,T2 y) {     ?type? s=x+y; //因为是模板函数,此时?type?类型不确定 } 

C++11增加decltype关键字

template<class T1,class T2> void fun(T1 x,T2 y) {     decltype(x+y) s=x+y; //s类型与x+y的类型一致 } 

使用decltype(expression) var 的步骤:

  1. 如果expression没有用括号括起来,则var与expression类型相同,包括const等限定符
double x =5.5; double& z =x; const double* pd; decltype(x) w; //w为double类型 decltype(z) u; //u为double& 类型 decltype(pd) v; //v为const double* 类型 
  1. 如果expression是一个函数调用,则var与返回值类型相同。并不会实际调用函数,编译器通过查看原型来确定返回值类型
  2. 如果expression是一个左值,则var为指向其类型的引用。常见的情况如下:
double x = 4.5; decltype((x)) r = x;//r是double&类型 decltype(x) r = x;//r是double类型  //括号不会改变expression的值和左值性 //可理解为加括号仅仅是decltype声明引用的一种方式 
  1. 如果前3条都不满足,则var与expression类型相同
int j=3; int &k=j; int &n=j;  decltype(j+6) x; //x是int decltype(k+n) y;//y是int ,虽然k和n是引用,但是k+n不是引用是2个int的和 

如果多次声明,可以结合typedefdecltype

typedef decltype(x+y) xytype; xytype z = x+y; xytype arr[10]; 

但是某些需定义返回值类型的函数模板任然不能得到解决,如:

template<class T1,class T2> ?type? fun(T1 x,T2 y) //此时无法确定类型 {     return x+y; } 

C++新增语法auto h(int x,float y) -> double,这称为后置返回类型,auto是一个占位符

template<class T1,class T2> auto fun(T1 x,T2 y)->decltype(x+y) //后置类型使用decltype {     return x+y; } 

发表评论

相关文章