1 ACGAN基本原理
1.2 ACGAN模型解释
ACGAN相对于CGAN使的判别器不仅可以判别真假,也可以判别类别 。通过对生成数据类别的判断,判别器可以更好地传递loss函数使得生成器能够更加准确地找到label对应的噪声分布,通过下图告诉了我们ACGAN与CGAN的异同之处 :

对于CGAN和ACGAN,生成器输入均为潜在矢量及其标签,输出是属于输入类标签的伪造数据。对于CGAN,判别器的输入是数据(包含假的或真实的数据)及其标签, 输出是图像属于真实数据的概率。对于ACGAN,判别器的输入是数据,而输出是该图像属于真实数据的概率以及其类别概率。
在ACGAN中,对于生成器来说有两个输入,一个是标签的分类数据c,另一个是随机数据z,得到生成数据为
;对于判别器,产生跨域标签和源数据的概率分布
1.2 ACGAN损失函数
对于判别器而言,即希望分类正确,有希望能正确分辨数据的真假;对于生成器而言,也希望分类正确,但希望判别器不能正确分辨真假。因此在训练判别器的时候,我们希望LSE+LCS最大化;在训练生成器的时候,我们希望LCS-LSE最大化。

logP(SR = real | Xreal)表示鉴别器将真实样本源正确分类为真实样本的对数似然;logP(SR = fake | Xfake)表示鉴别器正确地将假样本的来源分类为假样本的对数似然E[.]表示所有样本的平均值logP(CS = CS | Xreal)表示鉴别器正确分类真实样本的对数似然logP(CS = CS | Xfake)表示鉴别器正确分类具有正确类别标签的假样本的对数似然
判别器的损失函数 = LSE + LCS;生成器的损失函数 = LCS - LSE
- LSE测量鉴别器正确区分样本是真还是假的程度。这有助于鉴别器熟练地识别来源(真实的或生成的)。
- LCS确保生成的样本不仅看起来真实,而且携带正确的类信息。它引导生成器在不同的类中产生多样化和现实的样本。
2 ACGAN pytorch代码实现
完整代码链接:https://github.com/znxlwm/pytorch-generative-model-collections/tree/master
(但是这个代码我训练的时候损失函数也对应的上,得到的图片是黑乎乎的一片,也不知道是什么原因,如果知道的师傅可以麻烦告知一下吗?(感谢))
这个代码在训练ACGAN模型的时候加载数据集的时候会出现问题,因为我使用的是minist数据集,所以应该改为单通道的:

import utils, torch, time, os, pickle import numpy as np import torch.nn as nn import torch.optim as optim from dataloader import dataloader class generator(nn.Module): # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657) # Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S def __init__(self, input_dim=100, output_dim=1, input_size=32, class_num=10): super(generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.input_size = input_size self.class_num = class_num self.fc = nn.Sequential( nn.Linear(self.input_dim + self.class_num, 1024), nn.BatchNorm1d(1024), nn.ReLU(), nn.Linear(1024, 128 * (self.input_size // 4) * (self.input_size // 4)), nn.BatchNorm1d(128 * (self.input_size // 4) * (self.input_size // 4)), nn.ReLU(), ) self.deconv = nn.Sequential( nn.ConvTranspose2d(128, 64, 4, 2, 1), nn.BatchNorm2d(64), nn.ReLU(), nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1), nn.Tanh(), ) utils.initialize_weights(self) def forward(self, input, label): x = torch.cat([input, label], 1) x = self.fc(x) x = x.view(-1, 128, (self.input_size // 4), (self.input_size // 4)) x = self.deconv(x) return x class discriminator(nn.Module): # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657) # Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S def __init__(self, input_dim=1, output_dim=1, input_size=32, class_num=10): super(discriminator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.input_size = input_size self.class_num = class_num self.conv = nn.Sequential( nn.Conv2d(self.input_dim, 64, 4, 2, 1), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), ) self.fc1 = nn.Sequential( nn.Linear(128 * (self.input_size // 4) * (self.input_size // 4), 1024), nn.BatchNorm1d(1024), nn.LeakyReLU(0.2), ) self.dc = nn.Sequential( nn.Linear(1024, self.output_dim), nn.Sigmoid(), ) self.cl = nn.Sequential( nn.Linear(1024, self.class_num), ) utils.initialize_weights(self) def forward(self, input): x = self.conv(input) x = x.view(-1, 128 * (self.input_size // 4) * (self.input_size // 4)) x = self.fc1(x) d = self.dc(x) c = self.cl(x) return d, c class ACGAN(object): def __init__(self, args): # parameters self.epoch = args.epoch self.sample_num = 100 self.batch_size = args.batch_size self.save_dir = args.save_dir self.result_dir = args.result_dir self.dataset = args.dataset self.log_dir = args.log_dir self.gpu_mode = args.gpu_mode self.model_name = args.gan_type self.input_size = args.input_size # 输入图像的尺寸 self.z_dim = 62 # 潜在向量维度 self.class_num = 10 self.sample_num = self.class_num ** 2 # 总样本的数量 # load dataset self.data_loader = dataloader(self.dataset, self.input_size, self.batch_size) # 加载数据集 data = self.data_loader.__iter__().__next__()[0] # 获得第一个批次的数据,data 的形状通常是 (batch_size, channels, height, width) # networks init self.G = generator(input_dim=self.z_dim, output_dim=data.shape[1], input_size=self.input_size) self.D = discriminator(input_dim=data.shape[1], output_dim=1, input_size=self.input_size) self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2)) self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2)) # 查看是否启用了gpu模式 if self.gpu_mode: self.G.cuda() self.D.cuda() self.BCE_loss = nn.BCELoss().cuda() # 将交叉熵损失加载到GPU self.CE_loss = nn.CrossEntropyLoss().cuda() # 将二元交叉熵损失加载到GPU else: self.BCE_loss = nn.BCELoss() self.CE_loss = nn.CrossEntropyLoss() print('---------- Networks architecture -------------') utils.print_network(self.G) utils.print_network(self.D) print('-----------------------------------------------') # fixed noise & condition # 为每个类别生成潜在向量(latent vector)z,并确保同一类别的所有样本共享相同的潜在向量 self.sample_z_ = torch.zeros((self.sample_num, self.z_dim)) for i in range(self.class_num): self.sample_z_[i*self.class_num] = torch.rand(1, self.z_dim) # 为每一个类别随机生成潜在变量 for j in range(1, self.class_num): self.sample_z_[i*self.class_num + j] = self.sample_z_[i*self.class_num] # 同一类别的样本共享相同的潜在变量 # 为每个样本创造标签向量 temp = torch.zeros((self.class_num, 1)) # 10*1 for i in range(self.class_num): temp[i, 0] = i temp_y = torch.zeros((self.sample_num, 1)) for i in range(self.class_num): temp_y[i*self.class_num: (i+1)*self.class_num] = temp # 给每个样本赋予相同的标签 # 编码one-hot self.sample_y_ = torch.zeros((self.sample_num, self.class_num)).scatter_(1, temp_y.type(torch.LongTensor), 1) if self.gpu_mode: self.sample_z_, self.sample_y_ = self.sample_z_.cuda(), self.sample_y_.cuda() # 用于训练模型 def train(self): self.train_hist = {} self.train_hist['D_loss'] = [] self.train_hist['G_loss'] = [] self.train_hist['per_epoch_time'] = [] self.train_hist['total_time'] = [] self.y_real_, self.y_fake_ = torch.ones(self.batch_size, 1), torch.zeros(self.batch_size, 1) if self.gpu_mode: self.y_real_, self.y_fake_ = self.y_real_.cuda(), self.y_fake_.cuda() self.D.train() print('training start!!') start_time = time.time() for epoch in range(self.epoch): self.G.train() epoch_start_time = time.time() for iter, (x_, y_) in enumerate(self.data_loader): if iter == self.data_loader.dataset.__len__() // self.batch_size: break z_ = torch.rand((self.batch_size, self.z_dim)) y_vec_ = torch.zeros((self.batch_size, self.class_num)).scatter_(1, y_.type(torch.LongTensor).unsqueeze(1), 1) if self.gpu_mode: x_, z_, y_vec_ = x_.cuda(), z_.cuda(), y_vec_.cuda() # update D network self.D_optimizer.zero_grad() # 梯度清0 D_real, C_real = self.D(x_) # 获取判别器的预测结果 D_real_loss = self.BCE_loss(D_real, self.y_real_) C_real_loss = self.CE_loss(C_real, torch.max(y_vec_, 1)[1]) G_ = self.G(z_, y_vec_) # 生成伪造数据 D_fake, C_fake = self.D(G_) D_fake_loss = self.BCE_loss(D_fake, self.y_fake_) C_fake_loss = self.CE_loss(C_fake, torch.max(y_vec_, 1)[1]) D_loss = D_real_loss + C_real_loss + D_fake_loss + C_fake_loss self.train_hist['D_loss'].append(D_loss.item()) D_loss.backward() self.D_optimizer.step() # 更新判别器权重 # update G network self.G_optimizer.zero_grad() G_ = self.G(z_, y_vec_) D_fake, C_fake = self.D(G_) G_loss = self.BCE_loss(D_fake, self.y_real_) C_fake_loss = self.CE_loss(C_fake, torch.max(y_vec_, 1)[1]) G_loss += C_fake_loss self.train_hist['G_loss'].append(G_loss.item()) G_loss.backward() self.G_optimizer.step() # 打印训练信息 if ((iter + 1) % 100) == 0: print("Epoch: [%2d] [%4d/%4d] D_loss: %.8f, G_loss: %.8f" % ((epoch + 1), (iter + 1), self.data_loader.dataset.__len__() // self.batch_size, D_loss.item(), G_loss.item())) # 每一轮训练结束------------- self.train_hist['per_epoch_time'].append(time.time() - epoch_start_time) with torch.no_grad(): # 结束进行梯度运算 self.visualize_results((epoch+1)) # 每一epoch训练结束------------- self.train_hist['total_time'].append(time.time() - start_time) print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']), self.epoch, self.train_hist['total_time'][0])) print("Training finish!... save training results") self.save() # 保存训练历史 utils.generate_animation(self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name, self.epoch) utils.loss_plot(self.train_hist, os.path.join(self.save_dir, self.dataset, self.model_name), self.model_name) # 用于可视化生成的图像 def visualize_results(self, epoch, fix=True): self.G.eval() if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name): os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name) image_frame_dim = int(np.floor(np.sqrt(self.sample_num))) if fix: """ fixed noise """ samples = self.G(self.sample_z_, self.sample_y_) else: """ random noise """ sample_y_ = torch.zeros(self.batch_size, self.class_num).scatter_(1, torch.randint(0, self.class_num - 1, (self.batch_size, 1)).type(torch.LongTensor), 1) sample_z_ = torch.rand((self.batch_size, self.z_dim)) if self.gpu_mode: sample_z_, sample_y_ = sample_z_.cuda(), sample_y_.cuda() samples = self.G(sample_z_, sample_y_) if self.gpu_mode: samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1) else: samples = samples.data.numpy().transpose(0, 2, 3, 1) samples = (samples + 1) / 2 utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim], self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png') # 用于保存模型和训练历史 def save(self): save_dir = os.path.join(self.save_dir, self.dataset, self.model_name) if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(self.G.state_dict(), os.path.join(save_dir, self.model_name + '_G.pkl')) torch.save(self.D.state_dict(), os.path.join(save_dir, self.model_name + '_D.pkl')) with open(os.path.join(save_dir, self.model_name + '_history.pkl'), 'wb') as f: pickle.dump(self.train_hist, f) # 用于加载模型和训练历史 def load(self): save_dir = os.path.join(self.save_dir, self.dataset, self.model_name) self.G.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_G.pkl'))) self.D.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_D.pkl')))
由于上一个代码训练有问题,因此我训练的是以下代码:
模型结构:
# %% ''' acgan structure. the network model architecture from the paper [ACGAN](https://arxiv.org/abs/1610.09585) ''' import torch import torch.nn as nn import numpy as np from torch.nn.modules.activation import Sigmoid # %% class Generator(nn.Module): ''' pure Generator structure ''' def __init__(self, image_size=64, z_dim=100, conv_dim=64, channels = 1, n_classes=10): super(Generator, self).__init__() self.imsize = image_size self.channels = channels self.z_dim = z_dim self.n_classes = n_classes self.label_embedding = nn.Embedding(self.n_classes, self.z_dim) self.linear = nn.Linear(self.z_dim, 768) self.deconv1 = nn.Sequential( nn.ConvTranspose2d(768, 384, 4, 1, 0, bias=False), nn.BatchNorm2d(384), nn.ReLU(True) ) self.deconv2 = nn.Sequential( nn.ConvTranspose2d(384, 256, 4, 2, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True) ) self.deconv3 = nn.Sequential( nn.ConvTranspose2d(256, 192, 4, 2, 1, bias=False), nn.BatchNorm2d(192), nn.ReLU(True), ) self.deconv4 = nn.Sequential( nn.ConvTranspose2d(192, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(True) ) self.last = nn.Sequential( nn.ConvTranspose2d(64, self.channels, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, z, labels): label_emb = self.label_embedding(labels) gen_input = torch.mul(label_emb, z) out = self.linear(gen_input) out = out.view(-1, 768, 1, 1) out = self.deconv1(out) out = self.deconv2(out) out = self.deconv3(out) out = self.deconv4(out) out = self.last(out) # (*, c, 64, 64) return out # %% class Discriminator(nn.Module): ''' pure discriminator structure ''' def __init__(self, image_size = 64, conv_dim = 64, channels = 1, n_classes = 10): super(Discriminator, self).__init__() self.imsize = image_size self.channels = channels self.n_classes = n_classes # (*, c, 64, 64) self.conv1 = nn.Sequential( nn.Conv2d(self.channels, 16, 3, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(0.5, inplace=False) ) # (*, 64, 32, 32) self.conv2 = nn.Sequential( nn.Conv2d(16, 32, 3, 1, 1, bias=False), nn.BatchNorm2d(32), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(0.5, inplace=False) ) # (*, 128, 16, 16) self.conv3 = nn.Sequential( nn.Conv2d(32, 64, 3, 2, 1, bias=False), nn.BatchNorm2d(64), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(0.5, inplace=False) ) # (*, 256, 8, 8) self.conv4 = nn.Sequential( nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(0.5, inplace=False) ) self.conv5 = nn.Sequential( nn.Conv2d(128, 256, 3, 2, 1, bias=False), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(0.5, inplace=False) ) self.conv6 = nn.Sequential( nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(0.5, inplace=False) ) # output layers # (*, 512, 8, 8) # dis fc self.last_adv = nn.Sequential( nn.Linear(8*8*512, 1), # nn.Sigmoid() ) # aux classifier fc self.last_aux = nn.Sequential( nn.Linear(8*8*512, self.n_classes), nn.Softmax(dim=1) ) def forward(self, input): out = self.conv1(input) out = self.conv2(out) out = self.conv3(out) out = self.conv4(out) out = self.conv5(out) out = self.conv6(out) flat = out.view(input.size(0), -1) fc_dis = self.last_adv(flat) fc_aux = self.last_aux(flat) return fc_dis.squeeze(), fc_aux
数据加载:
# %% from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import torch import torchvision.transforms as transform from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets # %% def getdDataset(opt): if opt.dataset == 'mnist': dst = datasets.MNIST( # 相对路径,以调用的文件位置为准——因为我不是每次都想下载数据,因为很多数据是重复的 root='D:\ProfessionStudy\AI\data', train=True, download=True, transform=transform.Compose( [transform.Resize(opt.img_size), transform.ToTensor(), transform.Normalize([0.5], [0.5])] ) ) elif opt.dataset == 'fashion': dst = datasets.FashionMNIST( root='D:\ProfessionStudy\AI\data', train=True, download=True, # split='mnist', transform=transform.Compose( [transform.Resize(opt.img_size), transform.ToTensor(), transform.Normalize([0.5], [0.5])] ) ) elif opt.dataset == 'cifar10': dst = datasets.CIFAR10( root='D:\ProfessionStudy\AI\data', train=True, download=True, transform=transform.Compose( [transform.Resize(opt.img_size), transform.ToTensor(), transform.Normalize([0.5], [0.5])] ) ) dataloader = DataLoader( dst, batch_size=opt.batch_size, shuffle=True, ) return dataloader # %% from torchvision.utils import make_grid import matplotlib.pyplot as plt import numpy as np if __name__ == "__main__": class opt: dataroot = '../../data' dataset = 'mnist' img_size = 32 batch_size = 10 dataloader = getdDataset(opt) for i, (imgs, labels) in enumerate(dataloader): print(i, imgs.shape, labels.shape) print(labels) img = imgs[0] img = img.numpy() img = make_grid(imgs, normalize=True).numpy() img = np.transpose(img, (1, 2, 0)) plt.imshow(img) plt.show() plt.close() break # %%
训练过程:
# %% """ wgan with different loss function, used the pure dcgan structure. """ import os import time import torch import datetime import torch.nn as nn import torchvision from torchvision.utils import save_image from models.acgan import Generator, Discriminator from utils.utils import * # %% class Trainer_acgan(object): def __init__(self, data_loader, config): super(Trainer_acgan, self).__init__() # data loader self.data_loader = data_loader # exact model and loss self.model = config.model # model hyper-parameters self.imsize = config.img_size self.g_num = config.g_num self.z_dim = config.z_dim self.channels = config.channels self.n_classes = config.n_classes self.g_conv_dim = config.g_conv_dim self.d_conv_dim = config.d_conv_dim self.epochs = config.epochs self.batch_size = config.batch_size self.num_workers = config.num_workers self.g_lr = config.g_lr self.d_lr = config.d_lr self.beta1 = config.beta1 self.beta2 = config.beta2 self.pretrained_model = config.pretrained_model self.dataset = config.dataset self.use_tensorboard = config.use_tensorboard # path self.image_path = config.dataroot self.log_path = config.log_path self.sample_path = config.sample_path self.log_step = config.log_step self.sample_step = config.sample_step self.version = config.version # path with version self.log_path = os.path.join(config.log_path, self.version) self.sample_path = os.path.join(config.sample_path, self.version) if self.use_tensorboard: self.build_tensorboard() self.build_model() def train(self): ''' Training ''' # fixed input for debugging 用于每个epoch训练完成生成器后,用来测试其性能的 fixed_z = tensor2var(torch.randn(self.batch_size, self.z_dim)) # (*, 100) fixed_labels = tensor2var(torch.randint(0, self.n_classes, (self.batch_size,), dtype=torch.long)) # fixed_labels = to_LongTensor(np.array([num for _ in range(self.n_classes) for num in range(self.n_classes)])) for epoch in range(self.epochs): # start time start_time = time.time() for i, (real_images, labels) in enumerate(self.data_loader): # configure input real_images = tensor2var(real_images) labels = tensor2var(labels) # adversarial ground truths;valid 和 fake 是用于计算判别器损失的对抗性标签。 valid = tensor2var(torch.full((real_images.size(0),), 0.9)) # (*, ) fake = tensor2var(torch.full((real_images.size(0),), 0.0)) #(*, ) # ==================== Train D 训练判别器 ================== self.D.train() self.G.train() self.D.zero_grad() # 计算真实数据损失 dis_out_real, aux_out_real = self.D(real_images) d_loss_real = self.adversarial_loss_sigmoid(dis_out_real, valid) + self.aux_loss(aux_out_real, labels) # noise z for generator # 随机初始化假数据和标签 z = tensor2var(torch.randn(real_images.size(0), self.z_dim)) # *, 100 gen_labels = tensor2var(torch.randint(0, self.n_classes, (real_images.size(0),), dtype=torch.long)) # 生成假数据和标签 fake_images = self.G(z, gen_labels) # (*, c, 64, 64) dis_out_fake, aux_out_fake = self.D(fake_images) # (*,) # 计算假数据的损失 d_loss_fake = self.adversarial_loss_sigmoid(dis_out_fake, fake) + self.aux_loss(aux_out_fake, gen_labels) # total d loss d_loss = d_loss_real + d_loss_fake d_loss.backward() # update D self.d_optimizer.step() # calculate dis accuracy d_acc = compute_acc(aux_out_real, aux_out_fake, labels, gen_labels) # train the generator every 5 steps 每五步训练一次生成器 if i % self.g_num == 0: # =================== Train G and gumbel ===================== self.G.zero_grad() # create random noise fake_images = self.G(z, gen_labels) # compute loss with fake images dis_out_fake, aux_out_fake = self.D(fake_images) # batch x n g_loss_fake = self.adversarial_loss_sigmoid(dis_out_fake, valid) + self.aux_loss(aux_out_fake, gen_labels) g_loss_fake.backward() # update G self.g_optimizer.step() # 每个epoch训练完成------------------------------------------------------------------------------------------- # log to the tensorboard self.logger.add_scalar('d_loss', d_loss.data, epoch) self.logger.add_scalar('g_loss_fake', g_loss_fake.data, epoch) # end one epoch # print out log info if (epoch) % self.log_step == 0: elapsed = time.time() - start_time elapsed = str(datetime.timedelta(seconds=elapsed)) print("Elapsed [{}], G_step [{}/{}], D_step[{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, Acc: {:.4f}" .format(elapsed, epoch, self.epochs, epoch, self.epochs, d_loss.item(), g_loss_fake.item(), d_acc)) # sample images if (epoch) % self.sample_step == 0: self.G.eval() # save real image save_sample(self.sample_path + '/real_images/', real_images, epoch) with torch.no_grad(): fake_images = self.G(fixed_z, fixed_labels) # save fake image save_sample(self.sample_path + '/fake_images/', fake_images, epoch) # sample sample one images save_sample_one_image(self.sample_path, real_images, fake_images, epoch) # 所有epoch训练完成----------------------------------------------------------------------------------------------- # 建立训练模型 def build_model(self): self.G = Generator(image_size = self.imsize, z_dim = self.z_dim, conv_dim = self.g_conv_dim, channels = self.channels).cuda() self.D = Discriminator(image_size = self.imsize, conv_dim = self.d_conv_dim, channels = self.channels).cuda() # apply the weights_init to randomly initialize all weights # to mean=0, stdev=0.2 self.G.apply(weights_init) self.D.apply(weights_init) # optimizer self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2]) # for orignal gan loss function self.adversarial_loss_sigmoid = nn.BCEWithLogitsLoss().cuda() self.aux_loss = nn.CrossEntropyLoss().cuda() # print networks print(self.G) print(self.D) # 日志记录 def build_tensorboard(self): from torch.utils.tensorboard import SummaryWriter self.logger = SummaryWriter(self.log_path) def save_image_tensorboard(self, images, text, step): if step % 100 == 0: img_grid = torchvision.utils.make_grid(images, nrow=8) self.logger.add_image(text + str(step), img_grid, step) self.logger.close()
额外知识
什么是对数似然函数?
概率:在给定参数值的情况下,概率用于描述未来出现某种情况的观测数据的可信度。
似然:在给定观测数据的情况下,似然用于描述参数值的可信度。
极大似然估计:在给定观测数据的情况下,某个参数值有多个取值可能,但是如果存在某个参数值,使其对应的似然值最大,那就说明这个值就是该参数最可信的参数值。
对数似然函数
极大似然估计的求解方法,往往是对参数θ求导,然后找到导函数为0时对应的参数值,根据函数的单调性,找到极大似然估计时对应的参数θ。
但是在实际问题中,对于大批量的样本(大量的观测结果),其概率值是由很多项相乘组成的式子,对于参数θ的求导,是一个很复杂的问题,于是我们一个直观的想法,就是把它转成对数函数,累乘就变成了累加,即似然函数也就变成了对数似然函数。
对数似然函数的的主要作用,就是用来定义某个机器学习模型的损失函数,线性回归或者逻辑回归中都可以用到,然后我们再根据梯度下降/上升法求解损失函数的最优解,取得最优解时对应的参数θ,就是我们机器学习模型想要学习的参数 。
参考:
ACGAN(Auxiliary Classifier GAN)详解与实现(tensorflow2.x实现)-CSDN博客
一天一GAN-day4-ACGAN - 知乎 (zhihu.com)
GAN生成对抗网络-ACGAN原理与基本实现-条件生成对抗网络05 - gemoumou - 博客园 (cnblogs.com)
[生成对抗网络GAN入门指南](9)ACGAN: Conditional Image Synthesis with Auxiliary Classifier GANs-CSDN博客
【For非数学专业】通俗理解似然函数、概率、极大似然估计和对数似然_对数似然估计-CSDN博客
https://github.com/znxlwm/pytorch-generative-model-collections/tree/master