前言
作为深度学习的开山之作AlexNet,确实给后来的研究者们很大的启发,使用神经网络来做具体的任务,如分类任务、回归(预测)任务等,尽管AlexNet在今天看来已经有很多神经网络超越了它,但是它依然是重要的。AlexNet的作者Alex Krizhevsky首次在两块GTX 580 GPU上做神经网络,并且在2012年ImageNet竞赛中取得了冠军,这是一件非常有意义的事情,为后来深度学习的兴起奠定了重要基础,包括现在的显卡公司NVIDIA的市值超越苹果,都有深度学习的一份功劳。
下面讲解一下AlexNet的网络结构和论文复现。实验为使用AlexNet网络做猫狗分类任务;实验经过了模型搭建,训练,测试以及结果分析。
1.网络结构
AlexNet的网络一共有8层,前5层是卷积层,剩下3层是全连接层,具体如下所示:

第一层:卷积层1,输入为 224 × 224 × 3 的图像,卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11 × 11 × 3;stride = 4, stride表示的是步长, pad = 0, 表示不扩充边缘;卷积后的图形大小为:wide = (224 + 2 * padding - kernel_size) / stride + 1 = 54,height = (224 + 2 * padding - kernel_size) / stride + 1 = 54,dimention = 96,然后进行 (Local Response Normalized), 后面跟着池化pool_size = (3, 3), stride = 2, pad = 0 最终获得第一层卷积的feature map;
第二层:卷积层2, 输入为上一层卷积的feature map, 卷积的个数为256个,论文中的两个GPU分别有128个卷积核。卷积核的大小为:5 × 5 × 48;pad = 2, stride = 1; 然后做 LRN,最后 max_pooling, pool_size = (3, 3), stride = 2;
第三层:卷积3, 输入为第二层的输出,卷积核个数为384,kernel_size = (3 × 3 × 128),padding = 1,第三层没有做LRN和Pool;
第四层:卷积4, 输入为第三层的输出,卷积核个数为384,kernel_size = (3 × 3 × 192),padding = 1,和第三层一样,没有LRN和Pool;
第五层:卷积5, 输入为第四层的输出,卷积核个数为256,kernel_size = (3 × 3 × 192),padding = 1。然后直接进行max_pooling, pool_size = (3, 3), stride = 2;
第6,7,8层是全连接层,每一层的神经元的个数为4096,最终输出softmax为1000,因为上面介绍过,ImageNet这个比赛的分类个数为1000。全连接层中使用了Relu和Dropout。
2.数据集
数据集为猫狗的图片,其中猫的图片12500张,狗的图片12500张;训练数据集猫12300张,狗12300张,验证集猫100张,狗100张,测试集猫100张,狗100张;数据集链接:https://pan.baidu.com/s/11UHodPIHRDwHiRoae_fqtQ 提取码:d0fa;下图为训练集示意图:

3.数据集分类
将数据集中的猫和狗分别放在train_0和train_1中:
import os import re import shutil origin_path = '/workspace/src/how-to-read-paper/dataset/train' target_path_0 = '/workspace/src/how-to-read-paper/dataset/train_0/0' target_path_1 = '/workspace/src/how-to-read-paper/dataset/train_0/1' os.makedirs(target_path_0, exist_ok=True) os.makedirs(target_path_1, exist_ok=True) file_list = os.listdir(origin_path) for i in range(len(file_list)): old_path = os.path.join(origin_path, file_list[i]) result = re.findall(r'w+', file_list[i])[0] if result == 'cat': shutil.move(old_path, target_path_0) else: shutil.move(old_path, target_path_1)
4.模型搭建
进行模型搭建和数据导入:
import torch import os from torch import nn from torch.nn import functional as F from torch.autograd import Variable import matplotlib.pyplot as plt from torchvision.datasets import ImageFolder import torch.optim as optim import torch.utils.data from PIL import Image import torchvision.transforms as transforms # 超参数设置 DEVICE = torch.device('cuda'if torch.cuda.is_available() else 'cpu') EPOCH = 100 BATCH_SIZE = 256 # 卷积层和全连接层、前向传播 class AlexNet(nn.Module): def __init__(self, num_classes=2): super(AlexNet, self).__init__() # 卷积层 self.features = nn.Sequential( nn.Conv2d(3, 48, kernel_size=11), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(48, 128, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(128, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(192, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(192, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) # 全连接层 self.classifier = nn.Sequential( nn.Linear(6*6*128, 2048), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Linear(2048, 2048), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(2048, num_classes), ) # 前向传播 def forward(self, x): x = self.features(x) x = torch.flatten(x, start_dim=1) x = self.classifier(x) return x # 训练集、测试集、验证集的导入 # 归一化处理 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 训练集 path_1 = '/workspace/src/how-to-read-paper/dataset/train_0' trans_1 = transforms.Compose([ transforms.Resize((65, 65)), transforms.ToTensor(), normalize, ]) # 数据集 train_set = ImageFolder(root=path_1, transform=trans_1) # 数据加载器 train_loader = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) # 测试集 path_2 = '/workspace/src/how-to-read-paper/dataset/test' trans_2 = transforms.Compose([ transforms.Resize((65, 65)), transforms.ToTensor(), normalize, ]) test_data = ImageFolder(root=path_2, transform=trans_2) test_loader = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) # 验证集 path_3 = '/workspace/src/how-to-read-paper/dataset/valid' trans_3 = transforms.Compose([ transforms.Resize((65, 65)), transforms.ToTensor(), normalize, ]) valid_data = ImageFolder(root=path_3, transform=trans_3) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
5.训练
进行模型训练:
# 定义模型 model = AlexNet().to(DEVICE) # 优化器的选择 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0005) def train_model(model, device, train_loader, optimizer, epoch): train_loss = 0 model.train() for batch_index, (data, label) in enumerate(train_loader): data, label = data.to(device), label.to(device) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, label) loss.backward() optimizer.step() if batch_index % 300 == 0: train_loss = loss.item() print('Train Epoch:{}ttrain loss:{:.6f}'.format(epoch, loss.item())) return train_loss def test_model(model, device, test_loader): model.eval() correct = 0.0 test_loss = 0.0 # 不需要梯度的记录 with torch.no_grad(): for data, label in test_loader: data, label = data.to(device), label.to(device) output = model(data) test_loss += F.cross_entropy(output, label).item() pred = output.argmax(dim=1) correct += pred.eq(label.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test_average_loss:{:.4f}, Accuracy:{:3f}n'.format(test_loss, 100*correct/len(test_loader.dataset))) acc = 100*correct / len(test_loader.dataset) return test_loss, acc # 开始训练¶ list = [] Train_Loss_list = [] Valid_Loss_list = [] Valid_Accuracy_list = [] for epoch in range(1, EPOCH+1): # 训练集训练 train_loss = train_model(model, DEVICE, train_loader, optimizer, epoch) Train_Loss_list.append(train_loss) torch.save(model, r'/workspace/src/how-to-read-paper/model/model%s.pth' % epoch) # 验证集进行验证 test_loss, acc = test_model(model, DEVICE, valid_loader) Valid_Loss_list.append(test_loss) Valid_Accuracy_list.append(acc) list.append(test_loss)
6.测试
进行模型测试:
# 验证集的test_loss min_num = min(list) min_index = list.index(min_num) print('model%s' % (min_index+1)) print('验证集最高准确率:') print('{}'.format(Valid_Accuracy_list[min_index])) # 取最好的进入测试集进行测试 model = torch.load('/workspace/src/how-to-read-paper/model/model%s.pth' % (min_index+1)) model.eval() accuracy = test_model(model, DEVICE, test_loader) print('测试集准确率') print('{}%'.format(accuracy))
7.实验结果分析
下图为epoch为50和100的loss和acc的折线图,其中使用最优的模型epoch=50时测试集的loss=0.00132, acc=89.0%;其中使用最优的模型epoch=100时测试集的loss=0.00203, acc=91.5%;从实验结果可以看出epoch=20时模型train已经很好了,那么想要train一个更好的模型有方法吗?答案肯定是有的,比如说做一下数据增强、使用正则化项、噪声注入等,这些大家都可以尝试一下。
注:本实验代码地址

