TiDB Vector 抢先体验之用 TiDB 实现以图搜图

本文首发自 TiDB 社区专栏:https://tidb.net/blog/0c5672b9
转载请注明出处!

前言

最早知道 TiDB 要支持向量化的消息应该是在23年10月份左右,到第一次见到 TiDB Vector 的样子是在今年1月初,当时 dongxu 在朋友圈发了一张图:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

去年我研究了一段时间的向量数据库,一直对 TiDB 向量特性非常期待,看到这张图真的就激动万分,于是第一时间提交了 waitlist 等待体验 private beta。

苦等几个月,它终于来了(目前只对 TiDB Serverless 开放)。迫不及待做个小应用尝尝鲜。

waitlist申请入口:https://tidb.cloud/ai

体验入口:https://tidbcloud.com/

创建 TiDB Vector 实例

在收到体验邀请邮件后,恭喜你可以开始 TiDB Vector 之旅了。

TiDB Serverless 提供了免费试用额度,对于测试用途绰绰有余,只需要注册一个 TiDB Cloud 账号即可。

创建 TiDB Vector 实例和普通的 TiDB 实例并没有太大区别,在创建集群页面可以看到加入了如下开关:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

不过要注意的是目前 TiDB Vector 只在 AWS 的eu-central-1可用区开放,选到了其他可用区就看不到这个开关。

这里只需要填一个集群名称就可以开始创建,创建成功后的样子如下所示:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

下面开始进入正题。

关于向量的那些事

一些基础概念

  • 向量:向量就是一组浮点数,在编程语言中通常体现为 float 数组,数组的长度叫做维度(dim),维度越大精度越高,向量的数学表示是多维坐标系中的一个点。例如RGB颜色表示法就是一个简单的向量示例。
  • embedding:中文翻译叫嵌入,感觉不好理解,实质上就是把非结构化数据(文本、语音、图片、视频等)通过一系列算法加工变成向量的过程,这里面的算法叫做模型(model)。
  • 向量检索:计算两个向量之间的相似度。

向量检索初体验

连接到 TiDB Serverless 后,就可以体验文章开头图片中的向量操作。

创建一张带有向量字段的表,长度是3维。

CREATE TABLE vector_table (     id int PRIMARY KEY,     doc TEXT,     embedding vector < float > (3)   ); 

往表中插入向量数据:

INSERT INTO vector_table VALUES (1, 'apple', '[1,1,1]'), (2, 'banana', '[1,1,2]'), (3, 'dog', '[2,2,2]'); 

根据指定的向量做搜索:

SELECT *, vec_cosine_distance(embedding, '[1,1,3]') as distance FROM vector_table ORDER BY distance LIMIT 3;  +-----------------------+-----------------------+---------------------+ | id      | doc         | embedding             | distance            | +-----------------------+-----------------------+---------------------+ | 2       | banana      | [1,1,2]               | 0.015268072165338209| | 3       | dog         | [2,2,2]               | 0.1296117202215108  | | 1       | apple       | [1,1,1]               | 0.1296117202215108  | +---------+-------------+-----------------------+---------------------+ 

这里的distance就是两个向量之间的相似度,这个相似度是用vec_cosine_distance函数计算出来的,意味着两个向量之间的夹角越小相似性越高,夹角大小用余弦值来衡量。

还有以一种常用的相似度计算方法是比较两个向量之间的直线距离,称为欧式距离。

这也意味着不管两个向量是否有关联性,总是能计算出一个相似度,distance越小相似度越高。

向量检索原理

前面大概也提到了两种常用的向量检索方式:余弦相似度和欧式距离,不妨从从最简单的二维向量开始推导一下计算过程。

二维向量对应一个平面坐标系,一个向量就是坐标系中任意一点,要计算两点之间的直线距离用勾股定理很容易就能得出,两点夹角的余弦值也有公式能直接算出来。

拓展到三维坐标系,还是套用上一步的数学公式,只是多了一个坐标。

以此类推到n维也是一样的方法。

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

以上内容来自我去年讲的向量数据库公开课:https://www.bilibili.com/video/BV1YP411t7Do

可以发现维数越多,对算力的要求就越高,计算时间就越长。

第一个 TiDB AI 应用:以图搜图

基础实现

借助前面介绍的理论知识,一个以图搜图的流程应该是这样子:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

下面我用最简洁直白的代码演示整个流程,方便大家理解。

首先肯定是先连接到 TiDB 实例,目前官方提供了python SDK包tidb_vector,对SQLAlchemyPeewee这样的 ORM 框架也有支持,具体可参考https://github.com/pingcap/tidb-vector-python

这里简单起见直接用pymysql手写 SQL 操作,以下连接参数都可以从 TiDB Cloud 控制台获取:

import pymysql  def GetConnection():     connection = pymysql.connect(         host = "xxx.xxx.prod.aws.tidbcloud.com",         port = 4000,         user = "xxx.root",         password = "xxx",         database = "test",         ssl_verify_cert = True,         ssl_verify_identity = True,         ssl_ca = "C:\Users\59131\Downloads\isrgrootx1.pem"     )     return connection 

再借助 Towhee 来简化 embedding 的处理,里面包含了常用的非结构化数据到向量数据的转换模型,用流水线(pipeline)的形式清晰构建整个处理过程。

from towhee import ops,pipe,AutoPipes,AutoConfig,DataCollection  image_pipe = AutoPipes.pipeline('text_image_embedding') 

这里使用默认配置构建了一个text_image_embedding流水线,它专门用于对文本和图片做向量转换,从引用的源码中可以看到它使用的模型是clip_vit_base_patch16,默认模态是image

@AutoConfig.register class TextImageEmbeddingConfig(BaseModel):     model: Optional[str] = 'clip_vit_base_patch16'     modality: Optional[str] = 'image'     customize_embedding_op: Optional[Any] = None     normalize_vec: Optional[bool] = True     device: Optional[int] = -1 

clip_vit_base_patch16是一个512维的模型,因此需要在 TiDB 中创建512维的向量字段。

create table if not exists img_list  (     id int PRIMARY KEY,      path varchar(200) not null,      embedding vector<float>(512) ); 

我准备了3000张各种各样的动物图片用于测试,把它们依次加载到 TiDB 中,完整代码为:

def LoadImage(connection):     cursor = connection.cursor()      cursor.execute("create table if not exists img_list (id int PRIMARY KEY, path varchar(200) not null, embedding vector<float>(512));")     img_dir='D:\\test\\'     files = os.listdir(img_dir)     for i in range(len(files)):         path=os.path.join(img_dir, files[i])         embedding = image_pipe(path).get()[0]         cursor.execute("INSERT INTO img_list VALUE ("+str(i)+",'"+path+"' , '"+np.array2string(embedding, separator=',')+"');")     connection.commit() 

如果用 ORM 框架的话这里对数据库和向量加工操作会简单些,不需要数组到字符串之间的手工转换。

加载完成后的数据:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

下一步定义出根据指定向量在 TiDB 中检索的函数:

def SearchInTiDB(connection,vector):     cursor = connection.cursor()      begin_time = datetime.datetime.now()     cursor.execute("select id,path,vec_cosine_distance(embedding, '"+np.array2string(vector, separator=',')+"') as distance from img_list order by distance limit 3;")     end_time=datetime.datetime.now()     print("Search time:",(end_time-begin_time).total_seconds())     df =pd.DataFrame(cursor.fetchall())     return df[1] 

这里根据余弦相似度取出结果最相近的3张图片,返回它们的文件路径用于预览显示。

下一步用相同的 image pipeline 给指定图片做 embedding 得到向量,把这个向量传到 TiDB 中去搜索,最后把搜索结果输出显示。

def read_images(img_paths):     imgs = []     op = ops.image_decode.cv2_rgb()     for p in img_paths:         imgs.append(op(p))     return imgs      def ImageSearch(connection,path):         emb = image_pipe(path).get()[0]     res = SearchInTiDB(connection,emb)     p = (         pipe.input('path','search_result')         .map('path', 'img', ops.image_decode.cv2('rgb'))         .map('search_result','prev',read_images)         .output('img','prev')     )     DataCollection(p(path,res)).show() 

看一下最终搜索效果如何。先看一张已经在图片库存在的图(左边是待搜索的图,右边是搜索结果,按相似度由高到低):

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

不能说非常相似,只能说是一模一样,准确度非常高!再看一下不在图片库的搜索效果:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

图片库里有几十种动物,能够准确搜索出需要的是狗,特别是第一张从图片色彩、画面角度、动作神态上来说都非常相似。

使用向量索引优化

没错,向量也能加索引,但这个索引和传统的 B+ Tree 索引有些区别。前面提到向量相似度计算是一个非常消耗 CPU 的过程,如果每次计算都采用全量暴力搜索的方式那么无疑效率非常低。上一节演示的案例就是用指定的向量与表里的3000个向量逐一计算,最简单粗暴的办法。

向量索引牺牲了一定的准确度来提升性能,通常采用 ANN(近似最近邻搜索) 算法,HNSW 是最知名的算法之一。TiDB Vector 目前对它已经有了支持:

create table if not exists img_list_hnsw  (     id int PRIMARY KEY,      path varchar(200) not null,      embedding vector<float>(512) COMMENT "hnsw(distance=cosine)" ); 

重新把3000张图片加载到新的img_list_hnsw表做搜索测试。

以下分别是不带索引和带索引的查询耗时,第二次明显要快很多,如果数据量越大这个差距会越明显,只是目前还无法通过执行计划或其他方式区分出索引使用情况。

E:GitLocalAITester>python tidb_vec.py Search time: 0.320241 +------------------------------------+------------------------------------------------------------------------------------------------------+ | img                                | prev                                                                                                 | +====================================+======================================================================================================+ | Image shape=(900, 900, 3) mode=RGB | [Image shape=(84, 84, 3) mode=RGB,Image shape=(84, 84, 3) mode=RGB,Image shape=(84, 84, 3) mode=RGB] | +------------------------------------+------------------------------------------------------------------------------------------------------+  E:GitLocalAITester>python tidb_vec.py Search time: 0.239746 +------------------------------------+------------------------------------------------------------------------------------------------------+ | img                                | prev                                                                                                 | +====================================+======================================================================================================+ | Image shape=(900, 900, 3) mode=RGB | [Image shape=(84, 84, 3) mode=RGB,Image shape=(84, 84, 3) mode=RGB,Image shape=(84, 84, 3) mode=RGB] | +------------------------------------+------------------------------------------------------------------------------------------------------+ 

实际在本次测试中发现,使用 HNSW 索引对搜索结果准确度没有任何影响。

自然语言实现图片搜索

本来到这里测试目的已经达到了,突发奇想想试一下用自然语言也来实现图片搜索。于是对代码稍加改造:

def TextSearch(connection,text):     text_conf = AutoConfig.load_config('text_image_embedding')     text_conf.modality = 'text'      text_pipe = AutoPipes.pipeline('text_image_embedding', text_conf)     embedding = text_pipe(text).get()[0]          res=SearchInTiDB(connection,embedding)     p = (         pipe.input('text','search_result')         .map('search_result','prev',read_images)         .output('text','prev')     )     DataCollection(p(text,res)).show() 

还是用的clip_vit_base_patch16模型,只是使用模态改成了文本。通过对文本做 embedding 后得到向量数据送到 TiDB 中进行搜索,流程和前面基本一样。

看一下最终效果:

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

TiDB Vector 抢先体验之用 TiDB 实现以图搜图

可以发现英文的搜索效果要很多,这个主要是因为模型对于中文理解能力比较差,英文语义下 TiDB 的向量搜索准确度依然非常高。

基于 TiDB Vector,前后不到100行代码就实现了以图搜图和自然语言搜图。

未来展望

反正第一时间体验完的感受就是:太香了,强烈推荐给大家!

在以往,想在关系型数据库中对非结构化数据实现搜索是一件不敢想象的事,哪怕是号称无所不能的 PostgreSQL 在向量插件的加持下也没有获得太多关注,这其中有场景、性能、生态等各方面的因素制约。而如今在 AI 大浪潮中,应用场景变得多样化,生态链变得更丰富,TiDB Vector 的诞生恰逢其时。

但是不可忽视的是,传统数据库集成向量化的能力已经是大势所趋,哪怕是 Redis 这样的产品也拥有了向量能力。前有专门的向量数据库阻击,后有各种传统数据库追赶,这注定是一个惨烈的赛道,希望 TiDB 能深度打磨产品,突围成功。

期待的功能:更多的索引类型、GPU加速等。

当然了,最大的愿望必须是 TiDB On-Premises 中能尽快看到 Vector 的身影。

给 TiDB 点赞!

作者介绍:hey-hoho,来自神州数码钛合金战队,是一支致力于为企业提供分布式数据库TiDB整体解决方案的专业技术团队。团队成员拥有丰富的数据库从业背景,全部拥有TiDB高级资格证书,并活跃于TiDB开源社区,是官方认证合作伙伴。目前已为10+客户提供了专业的TiDB交付服务,涵盖金融、证券、物流、电力、政府、零售等重点行业。

发表评论

相关文章