Linux reset子系统

文章代码分析基于linux-5.19.13,架构基于aarch64(ARM64)。

1. 前言

复杂IC内部有很多具有独立功能的硬件模块,例如CPU cores、GPU cores、USB控制器、MMC控制器、等等,出于功耗、稳定性等方面的考虑,有些IC在内部为这些硬件模块设计了复位信号(reset signals),软件可通过寄存器(一般1个bit控制1个硬件)控制这些硬件模块的复位状态。
Linux kernel为了方便设备驱动的编写,抽象出一个简单的软件框架----reset framework,为reset的provider提供统一的reset资源管理手段,并为reset的consumer(各个硬件模块)提供便捷、统一的复位控制API。

2. 前言

reset子系统也分为了consumer和provider,结构体关系如下:

3. consumer

对于一个具体的硬件模块,它的要求很简单:复位我的硬件模块,而不必关注具体复位的手段(例如控制哪个寄存器的哪个bit位,等等)。

Linux kernel基于device tree提供了对应的reset framework:

  1. 首先,提供描述系统中reset资源的方法(参考provider的介绍),这样consumer可以基于这种描述,在自己的dts node中引用所需的reset信号。

  2. 然后,consumer设备在自己的dts node中使用“resets”、“reset-names”等关键字声明所需的reset的资源,例如("resets"字段的具体格式由reset provider决定):

device {   resets = <&rst 20>;   reset-names = "reset";  }; This represents a device with a single reset signal named "reset".  bus {    resets = <&rst 10> <&rst 11> <&rst 12> <&rst 11>;   reset-names = "i2s1", "i2s2", "dma", "mixer";  }; This represents a bus that controls the reset signal of each of four sub- ordinate devices. Consider for example a bus that fails to operate unless no child device has reset asserted.  
  1. 最后,consumer driver在需要的时候,可以调用下面的API复位自己(具体可参考"includelinuxreset.h"):
  • 只有一个reset信号的话,可以使用最简单的device_reset API
static inline int __must_check device_reset(struct device *dev) 
  • 如果需要更为复杂的控制(例如有多个reset信号、需要控制处于reset状态的长度的等),可以使用稍微复杂的API
/* 通过reset_control_get或者devm_reset_control_get获得reset句柄 */ struct reset_control *reset_control_get(struct device *dev, const char *id);                              struct reset_control *devm_reset_control_get(struct device *dev, const char *id);  /* 通过reset_control_put释放reset句柄 */ void reset_control_put(struct reset_control *rstc);    /* 通过reset_control_reset进行复位,或者通过reset_control_assert使设备处于复位生效状态,通过reset_control_deassert使复位失效 */ int reset_control_reset(struct reset_control *rstc);   /先复位,延迟一会,然后解复位                         int reset_control_assert(struct reset_control *rstc);  //复位                        int reset_control_deassert(struct reset_control *rstc);//解复位 

4. provider

kernel为reset provider提供的API位于"include/linux/reset-controller.h"中,很简单,无非就是:创建并填充reset controller设备(struct reset_controller_dev),并调用相应的接口:

  • reset_controller_register //注册reset_controller
  • reset_controller_unregister //注销reset_controller

reset controller的抽象也很简单:

/**  * struct reset_controller_dev - reset controller entity that might  *                               provide multiple reset controls  * @ops: a pointer to device specific struct reset_control_ops  * @owner: kernel module of the reset controller driver  * @list: internal list of reset controller devices  * @reset_control_head: head of internal list of requested reset controls  * @dev: corresponding driver model device struct  * @of_node: corresponding device tree node as phandle target  * @of_reset_n_cells: number of cells in reset line specifiers  * @of_xlate: translation function to translate from specifier as found in the  *            device tree to id as given to the reset control ops, defaults  *            to :c:func:`of_reset_simple_xlate`.  * @nr_resets: number of reset controls in this reset controller device  */ struct reset_controller_dev { 	const struct reset_control_ops *ops;//ops提供reset操作的实现,基本上是reset provider的所有工作量。 	struct module *owner; 	struct list_head list;////全局链表,复位控制器注册后挂载到全局链表 	struct list_head reset_control_head;////各个模块复位的链表头 	struct device *dev; 	struct device_node *of_node; 	int of_reset_n_cells;////用于解析consumer device dts node中的“resets = <>; ”节点,指示dts中引用时,需要几个参数 	int (*of_xlate)(struct reset_controller_dev *rcdev, 			const struct of_phandle_args *reset_spec);//用于解析consumer device dts node中的“resets = <>; ”节点 	unsigned int nr_resets;//该reset controller所控制的reset信号的个数 }; 

struct reset_control_ops也比较单纯,如下:

/**  * struct reset_control_ops - reset controller driver callbacks  *  * @reset: for self-deasserting resets, does all necessary  *         things to reset the device  * @assert: manually assert the reset line, if supported  * @deassert: manually deassert the reset line, if supported  * @status: return the status of the reset line, if supported  */ struct reset_control_ops { 	int (*reset)(struct reset_controller_dev *rcdev, unsigned long id);   //控制设备完成一次完整的复位过程 	int (*assert)(struct reset_controller_dev *rcdev, unsigned long id);  //控制设备reset状态的生效 	int (*deassert)(struct reset_controller_dev *rcdev, unsigned long id);//控制设备reset状态的失效。 	int (*status)(struct reset_controller_dev *rcdev, unsigned long id);  //复位状态查询 }; 

5. reset驱动的设备树描述总结

5.1 对于provider

reset:reset-controller{   compatible = "xx,xx-reset";   reg = <0x0 0x30390000 0x0 0x10000>;   #reset-cells = <1>; }; 

上述是一个reset控制器的节点,0x30390000 是寄存器基址,0x1000是映射大小。"#reset-cells"代表引用该reset时需要的cells个数。

5.2 对于consumer

例如,#reset-cells = <1>; 则正确引用为:

mmc:mmc@0x12345678{     ......     resets = <&reset  0>;//0代表reset设备id,id是自定义的,但是不能超过reset驱动中指定的设备个数     ...... }; 

6. 开源reset驱动实例

6.1 实例1(比较容易理解)

设备树: arch/arm/boot/dts/imx7d.dtsi

	pcie: pcie@0x33800000 { 		compatible = "fsl,imx7d-pcie", "snps,dw-pcie";  		....  		resets = <&src IMX7_RESET_PCIEPHY>, 			 <&src IMX7_RESET_PCIE_CTRL_APPS_EN>; 		reset-names = "pciephy", "apps"; 		status = "disabled"; 	}; 

驱动代码: drivers/reset/reset-imx7.c

...  struct imx7_src { 	struct reset_controller_dev rcdev; 	struct regmap *regmap; };  enum imx7_src_registers { 	SRC_A7RCR0		= 0x0004, 	SRC_M4RCR		= 0x000c, 	SRC_ERCR		= 0x0014, 	SRC_HSICPHY_RCR		= 0x001c, 	SRC_USBOPHY1_RCR	= 0x0020, 	SRC_USBOPHY2_RCR	= 0x0024, 	SRC_MIPIPHY_RCR		= 0x0028, 	SRC_PCIEPHY_RCR		= 0x002c, 	SRC_DDRC_RCR		= 0x1000, };  struct imx7_src_signal { 	unsigned int offset, bit; };  static const struct imx7_src_signal imx7_src_signals[IMX7_RESET_NUM] = { 	[IMX7_RESET_A7_CORE_POR_RESET0] = { SRC_A7RCR0, BIT(0) }, 	[IMX7_RESET_A7_CORE_POR_RESET1] = { SRC_A7RCR0, BIT(1) }, 	[IMX7_RESET_A7_CORE_RESET0]     = { SRC_A7RCR0, BIT(4) }, 	[IMX7_RESET_A7_CORE_RESET1]	= { SRC_A7RCR0, BIT(5) }, 	[IMX7_RESET_A7_DBG_RESET0]	= { SRC_A7RCR0, BIT(8) }, 	[IMX7_RESET_A7_DBG_RESET1]	= { SRC_A7RCR0, BIT(9) }, 	... };  static struct imx7_src *to_imx7_src(struct reset_controller_dev *rcdev) { 	return container_of(rcdev, struct imx7_src, rcdev); }  static int imx7_reset_set(struct reset_controller_dev *rcdev, 			  unsigned long id, bool assert) { 	struct imx7_src *imx7src = to_imx7_src(rcdev); 	const struct imx7_src_signal *signal = &imx7_src_signals[id]; 	unsigned int value = assert ? signal->bit : 0;  	switch (id) { 	case IMX7_RESET_PCIEPHY: 		/* 		 * wait for more than 10us to release phy g_rst and 		 * btnrst 		 */ 		if (!assert) 			udelay(10); 		break;  	case IMX7_RESET_PCIE_CTRL_APPS_EN: 		value = (assert) ? 0 : signal->bit; 		break; 	}  	return regmap_update_bits(imx7src->regmap, 				  signal->offset, signal->bit, value); }  static int imx7_reset_assert(struct reset_controller_dev *rcdev, 			     unsigned long id) { 	return imx7_reset_set(rcdev, id, true); }  static int imx7_reset_deassert(struct reset_controller_dev *rcdev, 			       unsigned long id) { 	return imx7_reset_set(rcdev, id, false); }  static const struct reset_control_ops imx7_reset_ops = { 	.assert		= imx7_reset_assert, 	.deassert	= imx7_reset_deassert, };  static int imx7_reset_probe(struct platform_device *pdev) { 	struct imx7_src *imx7src; 	struct device *dev = &pdev->dev; 	struct regmap_config config = { .name = "src" };  	imx7src = devm_kzalloc(dev, sizeof(*imx7src), GFP_KERNEL); 	if (!imx7src) 		return -ENOMEM;  	imx7src->regmap = syscon_node_to_regmap(dev->of_node); 	if (IS_ERR(imx7src->regmap)) { 		dev_err(dev, "Unable to get imx7-src regmap"); 		return PTR_ERR(imx7src->regmap); 	} 	regmap_attach_dev(dev, imx7src->regmap, &config);  	imx7src->rcdev.owner     = THIS_MODULE; 	imx7src->rcdev.nr_resets = IMX7_RESET_NUM; 	imx7src->rcdev.ops       = &imx7_reset_ops; 	imx7src->rcdev.of_node   = dev->of_node;  	return devm_reset_controller_register(dev, &imx7src->rcdev); }  static const struct of_device_id imx7_reset_dt_ids[] = { 	{ .compatible = "fsl,imx7d-src", }, 	{ /* sentinel */ }, };  static struct platform_driver imx7_reset_driver = { 	.probe	= imx7_reset_probe, 	.driver = { 		.name		= KBUILD_MODNAME, 		.of_match_table	= imx7_reset_dt_ids, 	}, }; builtin_platform_driver(imx7_reset_driver);  

6.2 实例2(在gpio子系统中嵌套reset子系统)

设备树: arc/arm64/boot/dts/myzr/myimx8mm.dts

&pcie0{ 	pinctrl-names = "default"; 	pinctrl-0 = <&pinctrl_i2c4_pcieclk>, <&pinctrl_gpio1_pciendis>, <&pinctrl_sd2_pciewake>, <&pinctrl_sai2_pcienrst>; 	disable-gpio = <&gpio1 5 GPIO_ACTIVE_LOW>; 	reset-gpio = <&gpio4 21 GPIO_ACTIVE_LOW>; 	ext_osc = <1>; 	status = "okay"; }; 

驱动代码: drivers/reset/gpio-reset.c

...  struct gpio_reset_data { 	struct reset_controller_dev rcdev; 	unsigned int gpio; 	bool active_low; 	s32 delay_us; 	s32 post_delay_ms; };  static void gpio_reset_set(struct reset_controller_dev *rcdev, int asserted) { 	struct gpio_reset_data *drvdata = container_of(rcdev, 			struct gpio_reset_data, rcdev); 	int value = asserted;  	if (drvdata->active_low) 		value = !value;  	gpio_set_value_cansleep(drvdata->gpio, value); }  static int gpio_reset(struct reset_controller_dev *rcdev, unsigned long id) { 	struct gpio_reset_data *drvdata = container_of(rcdev, 			struct gpio_reset_data, rcdev);  	if (drvdata->delay_us < 0) 		return -ENOSYS;  	gpio_reset_set(rcdev, 1); 	udelay(drvdata->delay_us); 	gpio_reset_set(rcdev, 0);  	if (drvdata->post_delay_ms < 0) 		return 0;  	msleep(drvdata->post_delay_ms); 	return 0; }  static int gpio_reset_assert(struct reset_controller_dev *rcdev, 		unsigned long id) { 	gpio_reset_set(rcdev, 1);  	return 0; }  static int gpio_reset_deassert(struct reset_controller_dev *rcdev, 		unsigned long id) { 	gpio_reset_set(rcdev, 0);  	return 0; }  static struct reset_control_ops gpio_reset_ops = { 	.reset = gpio_reset, 	.assert = gpio_reset_assert, 	.deassert = gpio_reset_deassert, };  static int of_gpio_reset_xlate(struct reset_controller_dev *rcdev, 			       const struct of_phandle_args *reset_spec) { 	if (WARN_ON(reset_spec->args_count != 0)) 		return -EINVAL;  	return 0; }  static int gpio_reset_probe(struct platform_device *pdev) { 	...  	drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata), GFP_KERNEL);  	...  	drvdata->rcdev.of_node = np; 	drvdata->rcdev.owner = THIS_MODULE; 	drvdata->rcdev.nr_resets = 1;                  ////该reset controller所控制的reset信号的个数 	drvdata->rcdev.ops = &gpio_reset_ops;          //ops提供reset操作的实现。 	drvdata->rcdev.of_xlate = of_gpio_reset_xlate;  	reset_controller_register(&drvdata->rcdev);    //注册reset controller  	return 0; }  static int gpio_reset_remove(struct platform_device *pdev) { 	struct gpio_reset_data *drvdata = platform_get_drvdata(pdev);  	reset_controller_unregister(&drvdata->rcdev);  	return 0; }  static struct of_device_id gpio_reset_dt_ids[] = { 	{ .compatible = "gpio-reset" }, 	{ } };  #ifdef CONFIG_PM_SLEEP static int gpio_reset_suspend(struct device *dev) { 	pinctrl_pm_select_sleep_state(dev);  	return 0; } static int gpio_reset_resume(struct device *dev) { 	pinctrl_pm_select_default_state(dev);  	return 0; } #endif  static const struct dev_pm_ops gpio_reset_pm_ops = { 	SET_LATE_SYSTEM_SLEEP_PM_OPS(gpio_reset_suspend, gpio_reset_resume) };  static struct platform_driver gpio_reset_driver = { 	.probe = gpio_reset_probe, 	.remove = gpio_reset_remove, 	.driver = { 		.name = "gpio-reset", 		.owner = THIS_MODULE, 		.of_match_table = of_match_ptr(gpio_reset_dt_ids), 		.pm = &gpio_reset_pm_ops, 	}, };  static int __init gpio_reset_init(void) { 	return platform_driver_register(&gpio_reset_driver); } arch_initcall(gpio_reset_init);  static void __exit gpio_reset_exit(void) { 	platform_driver_unregister(&gpio_reset_driver); } ... 

7. reset驱动的实质

操作soc对应的reset寄存器,以实现内核IP的复位,或者操作gpio管脚的电平,间接复位接到该pin脚的从设备。

参考

[1] Documentation/devicetree/bindings/reset/reset.txt
[2] Linux reset framework
[2] Linux reset子系统及驱动实例

发表评论

评论已关闭。

相关文章