“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

PocketFlow介绍

PocketFlow是我最近在探索的一个LLM 框架,我觉得很有意思,因此推荐给大家。

这个框架最大的特点就是:“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”。

我很好奇,一个框架只有100行代码是怎么做到的,它又有什么魅力呢?

正如作者所言现在的LLM框架过于臃肿了!

在使用各种框架的过程中,你可能会有如下的感觉:

  • 臃肿的抽象:正如 Octomind 的工程团队所解释的:“LangChain 在最初对我们简单的功能需求与它的使用假设相匹配时很有帮助。但其高级抽象很快使我们的代码更难以理解并令人沮丧地难以维护。”这些框架通过不必要的复杂性隐藏了简单功能。
  • 实现噩梦:除了抽象之外,这些框架还给开发者带来了依赖项臃肿、版本冲突和不断变化的接口的负担。开发者经常抱怨:“它不稳定,接口不断变化,文档经常过时。”另一个开发者开玩笑说:“在读这句话的时间内,LangChain 已经弃用了 4 个类而没有更新文档。”

PocketFlow作者开始思考这个问题:“我们真的需要这么多的包装器吗?如果我们去掉一切会怎样?什么是真正最小且可行的?

PocketFlow作者在过去一年从零开始构建 LLM 应用程序后,有了一个顿悟:在所有复杂性之下,LLM 系统本质上只是简单的有向图。通过去除不必要的层,他创建了 Pocket Flow——一个没有任何冗余、没有任何依赖、没有任何供应商锁定的框架,全部代码仅 100 行。

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

AI 系统框架的抽象、应用特定封装、供应商特定封装、代码行数和大小的比较。

来源:https://pocketflow.substack.com/p/i-built-an-llm-framework-in-just

GitHub地址:https://github.com/The-Pocket/PocketFlow

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

PocketFlow的构建块

flowchart TD id1[PocketFlow] -->b[Node] & c[Flow] & D[Shared Store]

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

理解PocketFlow需要理解Node、Flow与Shared Store这三个基本的概念。

想象 Pocket Flow 就像一个井然有序的厨房:

  • Node就像烹饪站(切菜、烹饪、摆盘)
  • Flow就像食谱,指示下一步访问哪个站台。
  • Shared Store是所有工作站都能看到原料的台面。

在我们的厨房(代理系统),每个站点(Node)执行三个简单的操作:

  • Prep: 从共享存储中获取你需要的东西(收集原料)
  • Exec: 执行你的专门任务(烹饪原料)
  • Post: 将结果返回到共享存储并确定下一步行动(上菜并决定下一步做什么)
flowchart TD id1[Node] -->b[Prep] & c[Exec] & D[Post]

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

食谱 (Flow) 依据条件 (Orch) 指导执行:

  • “如果蔬菜被切碎,前往烹饪站”
  • “如果饭菜做好了,移到装盘站“

PocketFlow还支持批处理、异步执行和并行处理,适用于节点和流程。就是这样!这就是构建LLM应用程序所需的一切。没有不必要的抽象,没有复杂的架构——只有简单的构建块,可以组合成强大的系统。

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

Pocket Flow 核心图抽象

来源:https://pocketflow.substack.com/p/i-built-an-llm-framework-in-just

PocketFlow作者介绍

Zachary Huang:即将加入微软研究院AI前沿研究。目前从事大规模语言模型代理和系统的研究。喜欢构建、写作和制作梗图。之前经历:哥伦比亚大学博士,微软Gray Systems Lab,Databricks,2023年谷歌博士奖学金。

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

大佬不仅代码厉害还喜欢写通俗易懂的文章,最近看完了大佬的所有文章,感谢大佬的贡献,感兴趣的朋友也可以去看看。

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

地址:https://pocketflow.substack.com

PocketFlow实践

直接上手学习大佬提供的cookbook即可。

这里就演示一下几个入门的demo。

pocketflow-hello-world

定义Node与Flow:

from pocketflow import Node, Flow from utils.call_llm import call_llm  # An example node and flow # Please replace this with your own node and flow class AnswerNode(Node):     def prep(self, shared):         # Read question from shared         return shared["question"]          def exec(self, question):         return call_llm(question)          def post(self, shared, prep_res, exec_res):         # Store the answer in shared         shared["answer"] = exec_res  answer_node = AnswerNode() qa_flow = Flow(start=answer_node) 

主脚本写了Shared Store:

from flow import qa_flow  # Example main function # Please replace this with your own main function def main():     shared = {         "question": "你是谁?",         "answer": None     }      qa_flow.run(shared)     print("Question:", shared["question"])     print("Answer:", shared["answer"])  if __name__ == "__main__":     main() 

call_llm可以改成这样:

from openai import OpenAI import os  def call_llm(prompt):     client = OpenAI(api_key="your api key",                      base_url="https://api.siliconflow.cn/v1")          response = client.chat.completions.create(         model="Qwen/Qwen2.5-72B-Instruct",         messages=[{"role": "user", "content": prompt}],         temperature=0.7     )          return response.choices[0].message.content  if __name__ == "__main__":     # Test the LLM call     messages = [{"role": "user", "content": "In a few words, what's the meaning of life?"}]     response = call_llm(messages)     print(f"Prompt: {messages[0]['content']}")     print(f"Response: {response}") 

效果:

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

pocketflow-chat

flowchart LR chat[ChatNode] -->|continue| chat

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

from pocketflow import Node, Flow from utils import call_llm  class ChatNode(Node):     def prep(self, shared):         # Initialize messages if this is the first run         if "messages" not in shared:             shared["messages"] = []             print("Welcome to the chat! Type 'exit' to end the conversation.")                  # Get user input         user_input = input("nYou: ")                  # Check if user wants to exit         if user_input.lower() == 'exit':             return None                  # Add user message to history         shared["messages"].append({"role": "user", "content": user_input})                  # Return all messages for the LLM         return shared["messages"]      def exec(self, messages):         if messages is None:             return None                  # Call LLM with the entire conversation history         response = call_llm(messages)         return response      def post(self, shared, prep_res, exec_res):         if prep_res is None or exec_res is None:             print("nGoodbye!")             return None  # End the conversation                  # Print the assistant's response         print(f"nAssistant: {exec_res}")                  # Add assistant message to history         shared["messages"].append({"role": "assistant", "content": exec_res})                  # Loop back to continue the conversation         return "continue"  # Create the flow with self-loop chat_node = ChatNode() chat_node - "continue" >> chat_node  # Loop back to continue conversation  flow = Flow(start=chat_node)  # Start the chat if __name__ == "__main__":     shared = {}     flow.run(shared) 

效果:

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

pocketflow-chat-guardrail

flowchart LR user[UserInputNode] -->|validate| guardrail[GuardrailNode] guardrail -->|retry| user guardrail -->|process| llm[LLMNode] llm -->|continue| user

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

  • 一个 UserInputNode,其 exec 方法收集用户输入
  • 一个GuardrailNode,用于验证查询是否与旅行相关,使用:
    • 基本验证检查(空输入、过短)
    • 基于 LLM 的验证,以确定查询是否与旅行相关
  • 一个 LLMNode,使用带旅行顾问系统提示的LLM处理有效的旅行查询
  • 流连接,在处理之前通过验证路由输入,并处理与旅行无关查询的重复尝试
from pocketflow import Node, Flow from utils import call_llm  class UserInputNode(Node):     def prep(self, shared):         # Initialize messages if this is the first run         if "messages" not in shared:             shared["messages"] = []             print("Welcome to the Travel Advisor Chat! Type 'exit' to end the conversation.")                  return None      def exec(self, _):         # Get user input         user_input = input("nYou: ")         return user_input      def post(self, shared, prep_res, exec_res):         user_input = exec_res                  # Check if user wants to exit         if user_input and user_input.lower() == 'exit':             print("nGoodbye! Safe travels!")             return None  # End the conversation                  # Store user input in shared         shared["user_input"] = user_input                  # Move to guardrail validation         return "validate"  class GuardrailNode(Node):     def prep(self, shared):         # Get the user input from shared data         user_input = shared.get("user_input", "")         return user_input          def exec(self, user_input):         # Basic validation checks         if not user_input or user_input.strip() == "":             return False, "Your query is empty. Please provide a travel-related question."                  if len(user_input.strip()) < 3:             return False, "Your query is too short. Please provide more details about your travel question."                  # LLM-based validation for travel topics         prompt = f""" Evaluate if the following user query is related to travel advice, destinations, planning, or other travel topics. The chat should ONLY answer travel-related questions and reject any off-topic, harmful, or inappropriate queries. User query: {user_input} Return your evaluation in YAML format: ```yaml valid: true/false reason: [Explain why the query is valid or invalid] ```"""                  # Call LLM with the validation prompt         messages = [{"role": "user", "content": prompt}]         response = call_llm(messages)                  # Extract YAML content         yaml_content = response.split("```yaml")[1].split("```")[0].strip() if "```yaml" in response else response                  import yaml         result = yaml.safe_load(yaml_content)         assert result is not None, "Error: Invalid YAML format"         assert "valid" in result and "reason" in result, "Error: Invalid YAML format"         is_valid = result.get("valid", False)         reason = result.get("reason", "Missing reason in YAML response")                  return is_valid, reason          def post(self, shared, prep_res, exec_res):         is_valid, message = exec_res                  if not is_valid:             # Display error message to user             print(f"nTravel Advisor: {message}")             # Skip LLM call and go back to user input             return "retry"                  # Valid input, add to message history         shared["messages"].append({"role": "user", "content": shared["user_input"]})         # Proceed to LLM processing         return "process"  class LLMNode(Node):     def prep(self, shared):         # Add system message if not present         if not any(msg.get("role") == "system" for msg in shared["messages"]):             shared["messages"].insert(0, {                 "role": "system",                  "content": "You are a helpful travel advisor that provides information about destinations, travel planning, accommodations, transportation, activities, and other travel-related topics. Only respond to travel-related queries and keep responses informative and friendly. Your response are concise in 100 words."             })                  # Return all messages for the LLM         return shared["messages"]      def exec(self, messages):         # Call LLM with the entire conversation history         response = call_llm(messages)         return response      def post(self, shared, prep_res, exec_res):         # Print the assistant's response         print(f"nTravel Advisor: {exec_res}")                  # Add assistant message to history         shared["messages"].append({"role": "assistant", "content": exec_res})                  # Loop back to continue the conversation         return "continue"  # Create the flow with nodes and connections user_input_node = UserInputNode() guardrail_node = GuardrailNode() llm_node = LLMNode()  # Create flow connections user_input_node - "validate" >> guardrail_node guardrail_node - "retry" >> user_input_node  # Loop back if input is invalid guardrail_node - "process" >> llm_node llm_node - "continue" >> user_input_node     # Continue conversation  flow = Flow(start=user_input_node)  # Start the chat if __name__ == "__main__":     shared = {}     flow.run(shared) 

效果:

“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”

最后

PocketFlow还有很多有趣的例子,感兴趣的朋友可以自己去试试!!

但是说实话PocketFlow的“易用性”还是不足的,没法像很多框架那样开箱即用,还是需要自己写很多代码的,但也就是它的小巧给了它很大的灵活性,开发者可以根据自己的想法灵活地去写程序。

发表评论

评论已关闭。

相关文章