4种插值算法

如果有一些稀疏的轨迹,如何将这些轨迹平滑插值处理呢?

方法1:线性插值

方法2:三次样条插值

方法3:贝塞尔曲线插值

方法4:拉格朗日插值

4种插值算法

线性插值:在两两相邻的点之间差值,两点间所有插值点都在一条直线上。

贝塞尔曲线:贝塞尔曲线不会经过所有的坐标点,会根据坐标点的排列趋势去拟合出一条相对平滑的从第1个点到最后一个点之间的曲线。

三次样条插值:插值函数会经过所有的坐标点,拟合函数平滑。

拉格朗日插值:点太多,会出现不稳定的结果。见下图:

4种插值算法

前三种插值算法都有特定的使用场景,按需使用就好了。

import time  import numpy as np from scipy.interpolate import interp1d from scipy.special import comb   def linear_interpolation(route, num_points):     # 1. 线性插值     # 将经纬度分开     lons = np.array([point[0] for point in route])     lats = np.array([point[1] for point in route])      # 创建插值函数     distance = np.cumsum(np.sqrt(np.ediff1d(lons, to_begin=0) ** 2 + np.ediff1d(lats, to_begin=0) ** 2))     distance /= distance[-1]      # 创建插值函数     lon_interp = interp1d(distance, lons, kind='linear')     lat_interp = interp1d(distance, lats, kind='linear')      # 生成新的距离点     new_distance = np.linspace(0, 1, num_points)      # 插值     new_lons = lon_interp(new_distance)     new_lats = lat_interp(new_distance)      return list(zip(new_lons, new_lats))   def cubic_spline_interpolation(route, num_points):     # 2. 三次样条插值     lons = np.array([point[0] for point in route])     lats = np.array([point[1] for point in route])      distance = np.cumsum(np.sqrt(np.ediff1d(lons, to_begin=0) ** 2 + np.ediff1d(lats, to_begin=0) ** 2))     distance /= distance[-1]      lon_interp = interp1d(distance, lons, kind='cubic')     lat_interp = interp1d(distance, lats, kind='cubic')      new_distance = np.linspace(0, 1, num_points)      new_lons = lon_interp(new_distance)     new_lats = lat_interp(new_distance)      return list(zip(new_lons, new_lats))   def bernstein_poly(i, n, t):     return comb(n, i) * (t ** i) * ((1 - t) ** (n - i))   def bezier_curve(route, num_points=100):     # 3. 贝塞尔曲线插值     n = len(route) - 1     t = np.linspace(0, 1, num_points)      lons = np.array([point[0] for point in route])     lats = np.array([point[1] for point in route])      new_lons = np.zeros(num_points)     new_lats = np.zeros(num_points)      for i in range(n + 1):         new_lons += bernstein_poly(i, n, t) * lons[i]         new_lats += bernstein_poly(i, n, t) * lats[i]      return list(zip(new_lons, new_lats))   import matplotlib.pyplot as plt   def plot_routes(original, linear, cubic, bezier):     plt.figure(figsize=(12, 8))      # 原始轨迹     orig_lons, orig_lats = zip(*original)     plt.plot(orig_lons, orig_lats, 'ro-', label='Original', alpha=0.5)      # 线性插值     lin_lons, lin_lats = zip(*linear)     plt.plot(lin_lons, lin_lats, 'b-', label='Linear', alpha=0.7)      # 三次样条插值     cub_lons, cub_lats = zip(*cubic)     plt.plot(cub_lons, cub_lats, 'g-', label='Cubic Spline', alpha=0.7)      # 贝塞尔曲线     bez_lons, bez_lats = zip(*bezier)     plt.plot(bez_lons, bez_lats, 'm-', label='Bezier', alpha=0.7)      plt.legend()     plt.xlabel('Longitude')     plt.ylabel('Latitude')     plt.title('Trajectory Interpolation Comparison')     plt.grid(True)     plt.show()   if __name__ == '__main__':     # 原始轨迹数据     route = [         [122.123456, 31.123456],         [122.234567, 31.234567],         [122.345678, 31.345678],         [122.456789, 31.456789],         [122.567890, 31.567890],         [122.678901, 31.578901],         [122.789012, 31.789012],         [122.890123, 31.890123],         [122.901234, 31.901234],     ]     start_time = time.time()     # 线性插值     linear_route = linear_interpolation(route, 1000)     print("线性插值结果 (前5个点):", linear_route[:5])     print("线性插值用时:", time.time() - start_time, "秒")      start_time = time.time()     # 三次样条插值     cubic_route = cubic_spline_interpolation(route, 1000)     print("三次样条插值结果 (前5个点):", cubic_route[:5])     print("三次样条插值用时:", time.time() - start_time, "秒")      start_time = time.time()     # 贝塞尔曲线插值     bezier_route = bezier_curve(route, 1000)     print("贝塞尔曲线插值结果 (前5个点):", bezier_route[:5])     print("贝塞尔曲线插值用时:", time.time() - start_time, "秒")      # 绘制比较图     plot_routes(route, linear_route, cubic_route, bezier_route)  
# 4、拉格朗日插值算法 import time  from scipy.interpolate import lagrange import numpy as np   def lagrange_interp(x, y, x_new):     """     Lagrange interpolation     :param x: x coordinates of data points     :param y: y coordinates of data points     :param x_new: x coordinates of new interpolated points     :return: y coordinates of new interpolated points     """     f = lagrange(x, y)     y_new = f(x_new)     return y_new   if __name__ == '__main__':     # 原始数据     route = [         [122.123456, 31.123456],         [122.234567, 31.234567],         [122.345678, 31.345678],         [122.456789, 31.456789],         [122.567890, 31.567890],         [122.678901, 31.678901],         [122.789012, 31.789012],         [122.890123, 31.890123],         [122.901234, 31.901234],      ]      x_list = [i[0] for i in route]     y_list = [i[1] for i in route]     # 新数据     x_new = np.arange(122.123456, 122.990123, 0.01)     y_new = lagrange_interp(x_list, y_list, x_new)     # 绘图     import matplotlib.pyplot as plt      plt.plot(x_list, y_list, 'o', label='original data')     plt.plot(x_new, y_new, label='interpolated data')     plt.legend()     plt.show()   

发表评论

评论已关闭。

相关文章