三维装箱问题(3D Bin Packing Problem, 3D-BPP)

提出问题

集装箱海运家具, 沙发, 茶几, 椅子等等, 有多少套家具,以及每个家具的长宽高都会告诉你.
把所有的家具都装进集装箱里, 要求通过算法算出一共需要多少集装箱.

  • 1.要考虑怎样装, 需要的集装箱才最少, 因为一个集装箱很贵的.
  • 2.要考虑怎样摆放, 占用的体积最小, 找最优解. 比如, 茶几和沙发摞在一起, 旁边还有空余的位置, 那是否还可以再塞个椅子进去。

你会怎样设计算法?

分解问题

这是一个典型的三维装箱问题(3D Bin Packing Problem, 3D-BPP),它是NP-hard问题,意味着没有已知的算法能在多项式时间内找到绝对最优解。因此,我们通常使用启发式算法(Heuristics)或近似算法来寻找一个足够好的解,即尽量少用集装箱。

以下是一个使用C#设计启发式算法的思路和代码框架:

核心思路:

  1. 容器选择: 通常海运有标准集装箱尺寸,如20GP, 40GP, 40HC。我们需要确定使用哪种尺寸的集装箱,或者允许算法选择混合使用(这会更复杂)。为简化,我们先假设使用同一种标准尺寸的集装箱,例如40HC(内尺寸约为:长12.03m, 宽2.35m, 高2.69m)。注意:单位要统一! 比如都用毫米(mm)或厘米(cm)。
  2. 物品表示: 每个家具是一个三维长方体,有长、宽、高。
  3. 旋转: 家具可以旋转摆放以更好地利用空间。一个长方体有最多6种基本朝向(不考虑绕垂直轴的90度旋转,因为那可以通过交换长宽实现)。
  4. 放置策略: 这是算法的关键。需要决定:
    • 物品顺序: 先放大件还是小件?通常先放大件(如按体积或最长边排序)效果较好(First Fit Decreasing - FFD 变种)。
    • 放置位置: 在容器的哪个位置放置物品?常用的策略是在可选空间中寻找“最合适”的位置,例如“最低-最左-最靠里”的角落。
    • 空间管理: 如何记录和管理容器内的剩余空间?这可以很复杂。常见方法有:
      • 层叠法(Layer-based): 一层一层地填充。
      • 最大空间法(Maximal Spaces): 维护一个剩余空间块的列表。
      • 三维坐标/体素法: 将容器空间离散化(计算量可能很大)。
      • 简单坐标点法: 维护一组可以放置物品的“锚点”(通常是已放置物品的角点或容器的角点)。
  5. 算法流程 (启发式 - 基于 FFD 和锚点/最低位置策略):
    • 初始化:
      • 获取所有家具列表及其尺寸。
      • 定义集装箱内部尺寸。
      • 对家具列表进行排序(例如,按体积降序)。
      • 创建一个空的集装箱列表。
    • 主循环: 遍历排序后的家具列表:
      • 对于当前家具 item:
        • 尝试放入现有集装箱: 遍历当前已打开的集装箱列表 containers
          • 对于每个集装箱 container:
            • 尝试找到一个有效位置放置 item(考虑所有6种旋转)。
            • 寻找位置 (启发式):
              • 维护一个该容器内可放置物品的“锚点”列表 anchorPoints(初始为 (0,0,0))。
              • 按一定顺序(如 Z坐标升序, Y升序, X升序)遍历 anchorPoints
              • 对每个锚点 p,尝试 item 的所有6种旋转 r
              • 检查 item 以旋转 r 放置在 p 时:
                • 是否完全在集装箱边界内?
                • 是否与该集装箱内已放置的任何其他物品 placedItem 发生碰撞?
              • 如果找到第一个有效的位置 (p, r)
                • item 放置在 containerp 点,使用旋转 r。记录其位置和尺寸。
                • 更新 containeranchorPoints:移除 p,并根据新放置的 item 添加新的潜在锚点(例如,新物品的右上角、前上角、右前角等)。需要仔细处理,避免重复和无效点。
                • 标记 item 已放置,跳出当前集装箱的尝试,处理下一个家具。
        • 如果现有集装箱都放不下:
          • 创建一个新的集装箱 newContainer
          • item 放入 newContainer(通常放在 (0,0,0) 位置,选择一个合适的旋转)。必须检查: 如果物品本身就比集装箱大,则无法放置,需要报错。
          • 记录放置信息,初始化 newContainer 的锚点列表。
          • newContainer 添加到 containers 列表中。
    • 结束: 所有家具处理完毕后,containers 列表的大小就是所需的集装箱数量。

C# 代码框架:

using System; using System.Collections.Generic; using System.Linq;  // 3D Point/Vector Structure public struct Point3D {     public decimal X, Y, Z;     public Point3D(decimal x, decimal y, decimal z) { X = x; Y = y; Z = z; }     public override string ToString() => $"({X}, {Y}, {Z})"; }  // Dimensions Structure public struct Dimensions {     public decimal Length, Width, Height; // L, W, H correspond to X, Y, Z axes when placed     public decimal Volume => Length * Width * Height;     public Dimensions(decimal l, decimal w, decimal h) { Length = l; Width = w; Height = h; }     public override string ToString() => $"[{Length}x{Width}x{Height}]";      // Get dimensions for different rotations     public Dimensions GetRotation(int rotationType)     {         switch (rotationType)         {             case 0: return new Dimensions(Length, Width, Height); // LWH (XYZ)             case 1: return new Dimensions(Length, Height, Width); // LHW (XZY)             case 2: return new Dimensions(Width, Length, Height); // WLH (YXZ)             case 3: return new Dimensions(Width, Height, Length); // WHL (YZX)             case 4: return new Dimensions(Height, Length, Width); // HLW (ZXY)             case 5: return new Dimensions(Height, Width, Length); // HWL (ZYX)             default: throw new ArgumentOutOfRangeException(nameof(rotationType));         }     } }  // Represents a furniture item public class Item {     public string Name { get; }     public Dimensions OriginalDimensions { get; }     public decimal Volume => OriginalDimensions.Volume;     // Potentially add weight, fragility, stacking constraints later      public Item(string name, decimal length, decimal width, decimal height)     {         Name = name;         // Ensure non-negative dimensions         OriginalDimensions = new Dimensions(             Math.Max(0, length),             Math.Max(0, width),             Math.Max(0, height)         );     }      public override string ToString() => $"{Name} {OriginalDimensions}"; }  // Represents an item placed inside a container public class PlacedItem {     public Item SourceItem { get; }     public Point3D Position { get; } // Bottom-Back-Left corner of the item in container coordinates     public Dimensions PlacedDimensions { get; } // Dimensions after rotation      // Bounding Box for collision detection     public Point3D MinCorner => Position;     public Point3D MaxCorner => new Point3D(Position.X + PlacedDimensions.Length, Position.Y + PlacedDimensions.Width, Position.Z + PlacedDimensions.Height);      public PlacedItem(Item sourceItem, Point3D position, Dimensions placedDimensions)     {         SourceItem = sourceItem;         Position = position;         PlacedDimensions = placedDimensions;     }      // AABB Collision Check     public bool Intersects(PlacedItem other)     {         return (this.MinCorner.X < other.MaxCorner.X && this.MaxCorner.X > other.MinCorner.X) &&                (this.MinCorner.Y < other.MaxCorner.Y && this.MaxCorner.Y > other.MinCorner.Y) &&                (this.MinCorner.Z < other.MaxCorner.Z && this.MaxCorner.Z > other.MinCorner.Z);     }      // Check if this item intersects with a potential placement     public bool Intersects(Point3D potentialPos, Dimensions potentialDims)     {          Point3D potMin = potentialPos;          Point3D potMax = new Point3D(potentialPos.X + potentialDims.Length, potentialPos.Y + potentialDims.Width, potentialPos.Z + potentialDims.Height);          return (this.MinCorner.X < potMax.X && this.MaxCorner.X > potMin.X) &&                (this.MinCorner.Y < potMax.Y && this.MaxCorner.Y > potMin.Y) &&                (this.MinCorner.Z < potMax.Z && this.MaxCorner.Z > potMin.Z);     } }  // Represents a single container public class Container {     public int Id { get; }     public Dimensions Dimensions { get; }     public List<PlacedItem> PlacedItems { get; }     public List<Point3D> AnchorPoints { get; private set; } // Potential placement corners      // Keep track of occupied volume/space for heuristics? (Optional)      public Container(int id, decimal length, decimal width, decimal height)     {         Id = id;         Dimensions = new Dimensions(length, width, height);         PlacedItems = new List<PlacedItem>();         // Start with the main corner as the only anchor point         AnchorPoints = new List<Point3D> { new Point3D(0, 0, 0) };     }       // Tries to find a position and rotation to place the item     public bool TryPlaceItem(Item item, out PlacedItem placement)     {         placement = null;          // Sort anchor points: typically Z, Y, X ascending to fill bottom-up, left-right, back-front         var sortedAnchors = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList();          foreach (Point3D anchor in sortedAnchors)         {             for (int rotationType = 0; rotationType < 6; rotationType++)             {                 Dimensions rotatedDims = item.OriginalDimensions.GetRotation(rotationType);                  // Check if item fits within container boundaries at this anchor                 if (anchor.X + rotatedDims.Length <= Dimensions.Length &&                     anchor.Y + rotatedDims.Width <= Dimensions.Width &&                     anchor.Z + rotatedDims.Height <= Dimensions.Height)                 {                     // Check for collisions with already placed items                     bool collision = false;                     foreach (PlacedItem existingItem in PlacedItems)                     {                         // Simple AABB check                          if (existingItem.Intersects(anchor, rotatedDims))                         {                             collision = true;                             break;                         }                     }                      if (!collision)                     {                         // Found a valid placement!                         placement = new PlacedItem(item, anchor, rotatedDims);                         return true; // Return the first valid placement found                     }                 }             }         }         return false; // Could not find a place for this item in this container     }      // Actually place the item and update anchors     public void PlaceItem(PlacedItem placement)     {         PlacedItems.Add(placement);          // Update anchor points - this is a crucial and potentially complex step         // A simple strategy: remove the used anchor and add new potential anchors         Point3D placedPos = placement.Position;         Dimensions placedDims = placement.PlacedDimensions;          // Remove the anchor point that was used for placement         AnchorPoints.RemoveAll(p => p.X == placedPos.X && p.Y == placedPos.Y && p.Z == placedPos.Z);          // Add new potential anchor points based on the corners of the placed item         // Only add points that are within the container bounds         // More sophisticated logic would check if these points are already covered or invalid         Point3D[] potentialNewAnchors = {             new Point3D(placedPos.X + placedDims.Length, placedPos.Y, placedPos.Z),             new Point3D(placedPos.X, placedPos.Y + placedDims.Width, placedPos.Z),             new Point3D(placedPos.X, placedPos.Y, placedPos.Z + placedDims.Height)         };          foreach (var newAnchor in potentialNewAnchors)         {             // Basic check: is it inside the container?             if (newAnchor.X < Dimensions.Length && newAnchor.Y < Dimensions.Width && newAnchor.Z < Dimensions.Height)             {                  // Basic check: does it overlap with the item just placed? (Shouldn't if corners are correct)                  // More advanced: check if it's inside *any* existing item or outside container                  // Avoid duplicates                 if (!AnchorPoints.Any(p => p.X == newAnchor.X && p.Y == newAnchor.Y && p.Z == newAnchor.Z))                 {                      // Further check: Is this point supported? (Simple heuristic: is Z>0 requires something below?)                      // For simplicity now, just add if inside bounds and not duplicate.                     AnchorPoints.Add(newAnchor);                 }             }         }          // Optional: Refine anchor points - remove points that are now inside the newly placed item          // AnchorPoints.RemoveAll(p => IsInside(p, placement)); // Need IsInside check          // Optional: Sort anchors again if needed for the next TryPlaceItem call          // AnchorPoints = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList();     }       // Helper to check if a point is strictly inside a placed item's volume     private bool IsInside(Point3D point, PlacedItem item)     {         return point.X > item.MinCorner.X && point.X < item.MaxCorner.X &&                point.Y > item.MinCorner.Y && point.Y < item.MaxCorner.Y &&                point.Z > item.MinCorner.Z && point.Z < item.MaxCorner.Z;     } }   // The main packer class public class Packer {     public Dimensions ContainerDimensions { get; }      public Packer(decimal containerLength, decimal containerWidth, decimal containerHeight)     {         ContainerDimensions = new Dimensions(containerLength, containerWidth, containerHeight);     }      public List<Container> PackItems(List<Item> itemsToPack)     {         // 1. Sort items (e.g., by volume descending) - FFD heuristic         var sortedItems = itemsToPack.OrderByDescending(item => item.Volume).ToList();          List<Container> containers = new List<Container>();         int containerIdCounter = 1;         HashSet<Item> packedItems = new HashSet<Item>(); // Keep track of packed items          foreach (var item in sortedItems)         {              if (packedItems.Contains(item)) continue; // Should not happen with list processing, but safe check              bool placed = false;              // 2. Try placing in existing containers             foreach (var container in containers)             {                 if (container.TryPlaceItem(item, out PlacedItem placement))                 {                     container.PlaceItem(placement);                     Console.WriteLine($"Placed {item.Name} in Container {container.Id} at {placement.Position} with rotation {placement.PlacedDimensions}");                     placed = true;                     packedItems.Add(item);                     break; // Move to the next item (First Fit)                 }             }              // 3. If not placed, open a new container             if (!placed)             {                 // Check if the item can fit in an empty container at all (any rotation)                 bool fitsAnyhow = false;                 PlacedItem initialPlacement = null;                 for(int r=0; r<6; ++r)                 {                     var dims = item.OriginalDimensions.GetRotation(r);                     if(dims.Length <= ContainerDimensions.Length &&                        dims.Width <= ContainerDimensions.Width &&                        dims.Height <= ContainerDimensions.Height)                        {                             initialPlacement = new PlacedItem(item, new Point3D(0,0,0), dims);                             fitsAnyhow = true;                             break;                        }                 }                  if (fitsAnyhow)                 {                     Container newContainer = new Container(containerIdCounter++, ContainerDimensions.Length, ContainerDimensions.Width, ContainerDimensions.Height);                     newContainer.PlaceItem(initialPlacement); // Place at (0,0,0) with the found rotation                     containers.Add(newContainer);                     packedItems.Add(item);                     Console.WriteLine($"Opened Container {newContainer.Id} and placed {item.Name} at {initialPlacement.Position} with rotation {initialPlacement.PlacedDimensions}");                 }                 else                 {                     // Item is too large for the container                     Console.WriteLine($"Error: Item {item.Name} ({item.OriginalDimensions}) is too large to fit in the container ({ContainerDimensions}).");                     // Decide how to handle this - skip item, throw exception?                 }             }         }          Console.WriteLine($"nPacking complete. Total containers used: {containers.Count}");         return containers;     } }  // Example Usage public class Example {     public static void Main(string[] args)     {         // --- Configuration ---         // Use internal dimensions of a 40ft High Cube container in cm         decimal containerL = 1203m;         decimal containerW = 235m;         decimal containerH = 269m; // Use decimal for potentially better precision with cm/mm         Console.WriteLine($"Using Container Dimensions: {containerL}cm x {containerW}cm x {containerH}cm");           // --- Furniture List (Example Data in cm) ---         List<Item> furniture = new List<Item>         {             // Sofas (L x W x H)             new Item("Sofa 1", 200m, 90m, 80m),             new Item("Sofa 2", 220m, 95m, 85m),             // Coffee Tables             new Item("Coffee Table 1", 120m, 60m, 45m),             new Item("Coffee Table 2", 100m, 100m, 40m),             // Chairs             new Item("Chair 1", 60m, 60m, 90m),             new Item("Chair 2", 60m, 60m, 90m),             new Item("Chair 3", 55m, 58m, 95m),             new Item("Chair 4", 55m, 58m, 95m),             // Larger item test             new Item("Wardrobe", 150m, 60m, 200m),              // More items              new Item("Bookshelf", 80m, 30m, 180m),              new Item("Side Table 1", 40m, 40m, 60m),              new Item("Side Table 2", 40m, 40m, 60m),              new Item("Ottoman", 70m, 70m, 40m),               // Add many more small items to test filling gaps              // ... (e.g., 20 small boxes 30x30x30)              // for (int i = 0; i < 20; i++) { furniture.Add(new Item($"Small Box {i+1}", 30m, 30m, 30m)); }         };          Console.WriteLine($"nItems to pack ({furniture.Count} total):");         foreach(var item in furniture) Console.WriteLine($"- {item}");           // --- Packing ---         Packer packer = new Packer(containerL, containerW, containerH);         List<Container> resultContainers = packer.PackItems(furniture);          // --- Output Results ---         Console.WriteLine($"n--- Packing Summary ---");         Console.WriteLine($"Total Containers Needed: {resultContainers.Count}");         for (int i = 0; i < resultContainers.Count; i++)         {             decimal packedVolume = resultContainers[i].PlacedItems.Sum(p => p.PlacedDimensions.Volume);             decimal totalVolume = resultContainers[i].Dimensions.Volume;             decimal utilization = totalVolume > 0 ? (packedVolume / totalVolume) * 100 : 0;             Console.WriteLine($"Container {resultContainers[i].Id}: Contains {resultContainers[i].PlacedItems.Count} items. Volume Utilization: {utilization:F2}%");             // Optionally print items in each container             // foreach(var placed in resultContainers[i].PlacedItems) {             //     Console.WriteLine($"  - {placed.SourceItem.Name} at {placed.Position} as {placed.PlacedDimensions}");             // }         }     } } 

关键点和改进方向:

  1. 单位一致性: 代码中使用 decimal 和厘米(cm)作为例子。确保所有输入尺寸和容器尺寸使用相同单位。
  2. 锚点管理: PlaceItem 中更新锚点的逻辑非常基础。更高级的算法会更智能地管理剩余空间,例如使用Maximal Spaces或更复杂的锚点生成/消除规则,以避免产生无法使用的小碎片空间或无效锚点。
  3. 启发式选择:
    • 排序: 按体积降序排序是常见的 FFD 启发式。也可以尝试按最长边、面积等排序。
    • 锚点选择: TryPlaceItem 中按 Z, Y, X 排序锚点尝试填充底部。可以尝试其他顺序。
    • 旋转选择: 当前代码尝试所有6种旋转。可以根据锚点和周围空间优先尝试更“可能”成功的旋转。
  4. 性能: 对于大量物品,碰撞检测(Intersects)和锚点管理会成为瓶颈。可能需要空间分区数据结构(如 Octree)来加速碰撞检测。
  5. 稳定性/约束: 当前算法纯粹是几何装箱。没有考虑:
    • 重量: 重物应在底部。
    • 易碎性: 不能将重物压在易碎品上。
    • 堆叠限制: 某些物品不能堆叠或只能承受有限的重量。
    • 方向: 有些家具(如沙发)可能不能倒置或侧放。
    • 这些约束需要添加到 Item 类和 TryPlaceItem 的检查逻辑中,会显著增加复杂性。
  6. 最优性: 这个启发式算法不保证找到绝对最少的集装箱数量。更复杂的算法(如禁忌搜索、模拟退火、遗传算法)或精确算法(分支定界法,但非常慢)可能得到更好的结果,但实现难度大得多。
  7. 用户界面/输入: 实际应用中,需要从文件、数据库或UI读取家具列表和尺寸。
  8. 可视化: 输出放置坐标后,使用3D可视化工具展示装箱结果会非常有帮助。

这个框架提供了一个起点。根据实际需求的复杂性和对最优性的要求,可以进一步优化和扩展这个算法。

发表评论

评论已关闭。

相关文章