随着人工智能和大模型的快速发展,云上GPU资源共享变得必要,因为它可以降低硬件成本,提升资源利用效率,并满足模型训练和推理对大规模并行计算的需求。
在kubernetes内置的资源调度功能中,GPU调度只能根据“核数”进行调度,但是深度学习等算法程序执行过程中,资源占用比较高的是显存,这样就形成了很多的资源浪费。
目前的GPU资源共享方案有两种。一种是将一个真正的GPU分解为多个虚拟GPU,即vGPU,这样就可以基于vGPU的数量进行调度;另一种是根据GPU的显存进行调度。
本文将讲述如何安装kubernetes组件实现根据GPU显存调度资源。
系统信息
-
系统:centos stream8
-
内核:4.18.0-490.el8.x86_64
-
驱动:NVIDIA-Linux-x86_64-470.182.03
-
docker:20.10.24
-
kubernetes版本:1.24.0
1. 驱动安装
请登录nvida官网自行安装:https://www.nvidia.com/Download/index.aspx?lang=en-us
2. docker安装
请自行安装docker或其他容器运行时,如果使用其他容器运行时,第三步配置请参考NVIDA官网 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installation-guide
注意:官方支持docker、containerd、podman,但本文档只验证过docker的使用,如果使用其他容器运行时,请注意差异性。
3. NVIDIA Container Toolkit 安装
- 设置仓库与GPG Key
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
- 开始安装
sudo dnf clean expire-cache --refresh sudo dnf install -y nvidia-container-toolkit
- 修改docker配置文件添加容器运行时实现
sudo nvidia-ctk runtime configure --runtime=docker
- 修改/etc/docker/daemon.json,设置nvidia为默认容器运行时(必需)
{ "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } } }
- 重启docker并开始验证是否生效
sudo systemctl restart docker sudo docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi
如果返回如下数据,说明配置成功
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 | | N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
4. 安装K8S GPU调度器
- 首先执行以下yaml,部署调度器
# rbac.yaml --- kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: gpushare-schd-extender rules: - apiGroups: - "" resources: - nodes verbs: - get - list - watch - apiGroups: - "" resources: - events verbs: - create - patch - apiGroups: - "" resources: - pods verbs: - update - patch - get - list - watch - apiGroups: - "" resources: - bindings - pods/binding verbs: - create - apiGroups: - "" resources: - configmaps verbs: - get - list - watch --- apiVersion: v1 kind: ServiceAccount metadata: name: gpushare-schd-extender namespace: kube-system --- kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: gpushare-schd-extender namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: gpushare-schd-extender subjects: - kind: ServiceAccount name: gpushare-schd-extender namespace: kube-system # deployment yaml --- kind: Deployment apiVersion: apps/v1 metadata: name: gpushare-schd-extender namespace: kube-system spec: replicas: 1 strategy: type: Recreate selector: matchLabels: app: gpushare component: gpushare-schd-extender template: metadata: labels: app: gpushare component: gpushare-schd-extender annotations: scheduler.alpha.kubernetes.io/critical-pod: '' spec: hostNetwork: true tolerations: - effect: NoSchedule operator: Exists key: node-role.kubernetes.io/master - effect: NoSchedule key: node-role.kubernetes.io/control-plane operator: Exists - effect: NoSchedule operator: Exists key: node.cloudprovider.kubernetes.io/uninitialized nodeSelector: node-role.kubernetes.io/control-plane: "" serviceAccount: gpushare-schd-extender containers: - name: gpushare-schd-extender image: registry.cn-hangzhou.aliyuncs.com/acs/k8s-gpushare-schd-extender:1.11-d170d8a env: - name: LOG_LEVEL value: debug - name: PORT value: "12345" # service.yaml --- apiVersion: v1 kind: Service metadata: name: gpushare-schd-extender namespace: kube-system labels: app: gpushare component: gpushare-schd-extender spec: type: NodePort ports: - port: 12345 name: http targetPort: 12345 nodePort: 32766 selector: # select app=ingress-nginx pods app: gpushare component: gpushare-schd-extender
- 在/etc/kubernetes目录下添加调度策略配置文件
#scheduler-policy-config.yaml --- apiVersion: kubescheduler.config.k8s.io/v1beta2 kind: KubeSchedulerConfiguration clientConnection: kubeconfig: /etc/kubernetes/scheduler.conf extenders: # 不知道为什么不支持svc的方式调用,必须用nodeport - urlPrefix: "http://gpushare-schd-extender.kube-system:12345/gpushare-scheduler" filterVerb: filter bindVerb: bind enableHTTPS: false nodeCacheCapable: true managedResources: - name: aliyun.com/gpu-mem ignoredByScheduler: false ignorable: false
上面的 http://gpushare-schd-extender.kube-system:12345 注意要替换为你本地部署的{nodeIP}:{gpushare-schd-extender的nodeport端口},否则会访问不到
查询命令如下:
kubectl get service gpushare-schd-extender -n kube-system -o jsonpath='{.spec.ports[?(@.name=="http")].nodePort}'
- 修改kubernetes调度配置 /etc/kubernetes/manifests/kube-scheduler.yaml
1. 在commond中添加 - --config=/etc/kubernetes/scheduler-policy-config.yaml 2. 添加pod挂载目录 在volumeMounts:中添加 - mountPath: /etc/kubernetes/scheduler-policy-config.yaml name: scheduler-policy-config readOnly: true 在volumes:中添加 - hostPath: path: /etc/kubernetes/scheduler-policy-config.yaml type: FileOrCreate name: scheduler-policy-config
注意:这里千万不要改错,否则可能会出现莫名其妙的错误
示例如下:


- 配置rbac及安装device插件
kubectl create -f https://raw.githubusercontent.com/AliyunContainerService/gpushare-device-plugin/master/device-plugin-rbac.yaml kubectl create -f https://raw.githubusercontent.com/AliyunContainerService/gpushare-device-plugin/master/device-plugin-ds.yaml
5. 在GPU节点上添加标签
kubectl label node <target_node> gpushare=true
6. 安装kubectl Gpu 插件
cd /usr/bin/ wget https://github.com/AliyunContainerService/gpushare-device-plugin/releases/download/v0.3.0/kubectl-inspect-gpushare chmod u+x /usr/bin/kubectl-inspect-gpushare
7. 验证
- 使用kubectl查询GPU资源使用情况
# kubectl inspect gpushare NAME IPADDRESS GPU0(Allocated/Total) GPU Memory(GiB) cn-shanghai.i-uf61h64dz1tmlob9hmtb 192.168.0.71 6/15 6/15 cn-shanghai.i-uf61h64dz1tmlob9hmtc 192.168.0.70 3/15 3/15 ------------------------------------------------------------------------------ Allocated/Total GPU Memory In Cluster: 9/30 (30%)
- 创建一个有GPU需求的资源,查看其资源调度情况
apiVersion: apps/v1 kind: Deployment metadata: name: binpack-1 labels: app: binpack-1 spec: replicas: 1 selector: # define how the deployment finds the pods it manages matchLabels: app: binpack-1 template: # define the pods specifications metadata: labels: app: binpack-1 spec: tolerations: - effect: NoSchedule key: cloudClusterNo operator: Exists containers: - name: binpack-1 image: cheyang/gpu-player:v2 resources: limits: # 单位GiB aliyun.com/gpu-mem: 3
8. 问题排查
如果在安装过程中发现资源未安装成功,可以通过pod查看日志
kubectl get po -n kube-system -o=wide | grep gpushare-device kubecl logs -n kube-system <pod_name>
参考地址:
NVIDA官网container-toolkit安装文档: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
阿里云GPU插件安装:https://github.com/AliyunContainerService/gpushare-scheduler-extender/blob/master/docs/install.md