d3d12龙书阅读—-绘制几何体(下)

d3d12龙书阅读----绘制几何体(下)

本节在上一节的基础上,对整个绘制过程进行优化,将绘制单个几何体的内容拓展到了多个几何体,同时对根签名进行了进一步地探索。

帧资源

在之前绘制每帧的结尾,我们都要使用flushingcommandqueue方法,要一直等待gpu执行完所有命令,才会继续绘制下一帧,此时cpu处于空闲时间,同时,在绘制每一帧的初始阶段,gpu要等待cpu提交命令,此时gpu处于空闲时间
解决上述问题的一种方法是:
构建以cpu每帧都要更新的资源为数组元素的环形数组,这些资源被称为帧资源,一般循环数组由3个帧资源元素构成
当gpu在处理上一帧的命令时,cpu可以为下一帧更新资源,并构建并提交相应的命令列表,如果环形数组有三个元素,则令cpu比gpu提前处理两帧,这样可以确保gpu持续工作
帧资源定义:

针对每个物体/几何体的常量缓冲区定义
目前存储的是每个物体的世界矩阵 即 模型矩阵 将物体从局部坐标系转换到世界坐标系 代表着物体的位置

struct ObjectConstants {     DirectX::XMFLOAT4X4 World = MathHelper::Identity4x4(); }; 针对每次渲染过程(rendering pass)所要用到的数据 比如 观察矩阵 投影矩阵 时间 等等 struct PassConstants {     DirectX::XMFLOAT4X4 View = MathHelper::Identity4x4();     DirectX::XMFLOAT4X4 InvView = MathHelper::Identity4x4();     DirectX::XMFLOAT4X4 Proj = MathHelper::Identity4x4();     DirectX::XMFLOAT4X4 InvProj = MathHelper::Identity4x4();     DirectX::XMFLOAT4X4 ViewProj = MathHelper::Identity4x4();     DirectX::XMFLOAT4X4 InvViewProj = MathHelper::Identity4x4();     DirectX::XMFLOAT3 EyePosW = { 0.0f, 0.0f, 0.0f };     float cbPerObjectPad1 = 0.0f;     DirectX::XMFLOAT2 RenderTargetSize = { 0.0f, 0.0f };     DirectX::XMFLOAT2 InvRenderTargetSize = { 0.0f, 0.0f };     float NearZ = 0.0f;     float FarZ = 0.0f;     float TotalTime = 0.0f;     float DeltaTime = 0.0f; }; 顶点定义 struct Vertex {     DirectX::XMFLOAT3 Pos;     DirectX::XMFLOAT4 Color; };  存储cpu为一帧构建命令列表所需资源 struct FrameResource { public:          FrameResource(ID3D12Device* device, UINT passCount, UINT objectCount);     FrameResource(const FrameResource& rhs) = delete;     FrameResource& operator=(const FrameResource& rhs) = delete;     ~FrameResource();      每一帧都要有自己的命令分配器     因为当上一帧的gpu还在处理命令时 我们不能重置命令分配器     Microsoft::WRL::ComPtr<ID3D12CommandAllocator> CmdListAlloc;      同理 每个帧资源也要有自己的常量缓冲区     std::unique_ptr<UploadBuffer<PassConstants>> PassCB = nullptr;     std::unique_ptr<UploadBuffer<ObjectConstants>> ObjectCB = nullptr;      围栏点可以帮助检测 gpu是否仍然使用着帧资源     UINT64 Fence = 0; }; 

可以看到我们在帧资源中将常量缓冲区分为pass 与 object, 这是基于资源的更新频率对常量资源进行分组,每次渲染过程我们都要更新pass缓冲区,而对于object来说,只有当发生变化的时候才需要更新,具体代码我们待会再看。

回到cpu与gpu的同步上来,首先创建初始化帧资源数组:

void ShapesApp::BuildFrameResources() {     for(int i = 0; i < gNumFrameResources; ++i)     {         mFrameResources.push_back(std::make_unique<FrameResource>(md3dDevice.Get(),             1, (UINT)mAllRitems.size()));             其中1代表着一个帧资源1个pass缓冲区 第二个是所有渲染物体的数目     } } 

cpu端更新第n帧:

void ShapesApp::Update(const GameTimer& gt) {     OnKeyboardInput(gt); 	UpdateCamera(gt);      循环帧资源数组     mCurrFrameResourceIndex = (mCurrFrameResourceIndex + 1) % gNumFrameResources;     mCurrFrameResource = mFrameResources[mCurrFrameResourceIndex].get();      等待gpu完成围栏点之前的所有命令     if(mCurrFrameResource->Fence != 0 && mFence->GetCompletedValue() < mCurrFrameResource->Fence)     {         HANDLE eventHandle = CreateEventEx(nullptr, false, false, EVENT_ALL_ACCESS);         ThrowIfFailed(mFence->SetEventOnCompletion(mCurrFrameResource->Fence, eventHandle));         WaitForSingleObject(eventHandle, INFINITE);         CloseHandle(eventHandle);     }     更新常量缓冲区 	UpdateObjectCBs(gt); 	UpdateMainPassCB(gt); } 

绘制第n帧:

void ShapesApp::draw(const GameTimer& gt){ 添加围栏值 将命令标记到此围栏点 mCurrFrameResource->Fence = ++mCurrentFence;  向命令队列中添加一条设置新围栏点的命令 由于这条命令要交给gpu处理,所以gpu处理完signal之前的所有命令之前,它不会设置新的围栏点 mCommandQueue->Signal(mFence.Get(), mCurrentFence); } 

其实这种方法也有着缺陷,如果gpu处理命令的速度大于cpu提交命令列表的速度,则还是要等待cpu,理想的情况是cpu处理帧的速度大于gpu,这样cpu可以有空闲时间来处理游戏逻辑的其它部分,此方法的最大好处是cpu可以持续向gpu提供数据

渲染项

渲染项是一个轻量型结构 用于存储绘制物体所需要数据:

struct RenderItem { 	RenderItem() = default;      世界矩阵     XMFLOAT4X4 World = MathHelper::Identity4x4();  	// 一个脏标记用于记录是否需要更新物体缓冲区 因为每个帧资源都有各自独立的物体缓冲区 所以脏标记的数目要设置和帧资源数目一致 	int NumFramesDirty = gNumFrameResources;  	// 当前渲染项对应object缓冲区索引 	UINT ObjCBIndex = -1;      该渲染项参与绘制的几何体 	MeshGeometry* Geo = nullptr;      //图元拓扑类型     D3D12_PRIMITIVE_TOPOLOGY PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;      // DrawIndexedInstanced 方法的参数     UINT IndexCount = 0;     UINT StartIndexLocation = 0;     int BaseVertexLocation = 0; }; 

渲染项的具体使用之后介绍

渲染过程中用到的常量数据

我们需要更新hlsl中用到的cbuffer:

cbuffer cbPerObject : register(b0) { 	float4x4 gWorld;  };  cbuffer cbPass : register(b1) {     float4x4 gView;     float4x4 gInvView;     float4x4 gProj;     float4x4 gInvProj;     float4x4 gViewProj;     float4x4 gInvViewProj;     float3 gEyePosW;     float cbPerObjectPad1;     float2 gRenderTargetSize;     float2 gInvRenderTargetSize;     float gNearZ;     float gFarZ;     float gTotalTime;     float gDeltaTime; }; 

更新object缓冲区 与 pass缓冲区 这里利用了前一节介绍的uploadbuffer的方法 从cpu端更新数据:

void ShapesApp::UpdateObjectCBs(const GameTimer& gt) { 	auto currObjectCB = mCurrFrameResource->ObjectCB.get(); 	for(auto& e : mAllRitems) 	{ 		每个帧资源都需要更新物体缓冲区 		if(e->NumFramesDirty > 0) 		{ 			XMMATRIX world = XMLoadFloat4x4(&e->World);  			ObjectConstants objConstants; 			XMStoreFloat4x4(&objConstants.World, XMMatrixTranspose(world));  			currObjectCB->CopyData(e->ObjCBIndex, objConstants);  			// Next FrameResource need to be updated too. 			e->NumFramesDirty--; 		} 	} }  void ShapesApp::UpdateMainPassCB(const GameTimer& gt) { 	XMMATRIX view = XMLoadFloat4x4(&mView); 	XMMATRIX proj = XMLoadFloat4x4(&mProj);  	XMMATRIX viewProj = XMMatrixMultiply(view, proj); 	XMMATRIX invView = XMMatrixInverse(&XMMatrixDeterminant(view), view); 	XMMATRIX invProj = XMMatrixInverse(&XMMatrixDeterminant(proj), proj); 	XMMATRIX invViewProj = XMMatrixInverse(&XMMatrixDeterminant(viewProj), viewProj);  	XMStoreFloat4x4(&mMainPassCB.View, XMMatrixTranspose(view)); 	XMStoreFloat4x4(&mMainPassCB.InvView, XMMatrixTranspose(invView)); 	XMStoreFloat4x4(&mMainPassCB.Proj, XMMatrixTranspose(proj)); 	XMStoreFloat4x4(&mMainPassCB.InvProj, XMMatrixTranspose(invProj)); 	XMStoreFloat4x4(&mMainPassCB.ViewProj, XMMatrixTranspose(viewProj)); 	XMStoreFloat4x4(&mMainPassCB.InvViewProj, XMMatrixTranspose(invViewProj)); 	mMainPassCB.EyePosW = mEyePos; 	mMainPassCB.RenderTargetSize = XMFLOAT2((float)mClientWidth, (float)mClientHeight); 	mMainPassCB.InvRenderTargetSize = XMFLOAT2(1.0f / mClientWidth, 1.0f / mClientHeight); 	mMainPassCB.NearZ = 1.0f; 	mMainPassCB.FarZ = 1000.0f; 	mMainPassCB.TotalTime = gt.TotalTime(); 	mMainPassCB.DeltaTime = gt.DeltaTime();  	auto currPassCB = mCurrFrameResource->PassCB.get(); 	currPassCB->CopyData(0, mMainPassCB); } 

绘制多种几何体

在这里就不再介绍柱体 球体 正方体的过程 设计到一些几何知识
直接进入几何体的绘制阶段

创建顶点与索引缓冲区

将所有几何体的顶点缓冲区 与 索引缓冲区,合成一个大的顶点缓冲区与 索引缓冲区,之后使用drawindexinstanced方法绘制 需要记录每个几何体起始索引 索引数 以及起始顶点

void ShapesApp::BuildShapeGeometry() {     GeometryGenerator geoGen; 	GeometryGenerator::MeshData box = geoGen.CreateBox(1.5f, 0.5f, 1.5f, 3); 	GeometryGenerator::MeshData grid = geoGen.CreateGrid(20.0f, 30.0f, 60, 40); 	GeometryGenerator::MeshData sphere = geoGen.CreateSphere(0.5f, 20, 20); 	GeometryGenerator::MeshData cylinder = geoGen.CreateCylinder(0.5f, 0.3f, 3.0f, 20, 20);  	// 计算各几何体的起始顶点 	UINT boxVertexOffset = 0; 	UINT gridVertexOffset = (UINT)box.Vertices.size(); 	UINT sphereVertexOffset = gridVertexOffset + (UINT)grid.Vertices.size(); 	UINT cylinderVertexOffset = sphereVertexOffset + (UINT)sphere.Vertices.size();  	// 存储起始索引 	UINT boxIndexOffset = 0; 	UINT gridIndexOffset = (UINT)box.Indices32.size(); 	UINT sphereIndexOffset = gridIndexOffset + (UINT)grid.Indices32.size(); 	UINT cylinderIndexOffset = sphereIndexOffset + (UINT)sphere.Indices32.size();      定义各子网格结构体 	SubmeshGeometry boxSubmesh; 	boxSubmesh.IndexCount = (UINT)box.Indices32.size(); 	boxSubmesh.StartIndexLocation = boxIndexOffset; 	boxSubmesh.BaseVertexLocation = boxVertexOffset;  	SubmeshGeometry gridSubmesh; 	gridSubmesh.IndexCount = (UINT)grid.Indices32.size(); 	gridSubmesh.StartIndexLocation = gridIndexOffset; 	gridSubmesh.BaseVertexLocation = gridVertexOffset;  	SubmeshGeometry sphereSubmesh; 	sphereSubmesh.IndexCount = (UINT)sphere.Indices32.size(); 	sphereSubmesh.StartIndexLocation = sphereIndexOffset; 	sphereSubmesh.BaseVertexLocation = sphereVertexOffset;  	SubmeshGeometry cylinderSubmesh; 	cylinderSubmesh.IndexCount = (UINT)cylinder.Indices32.size(); 	cylinderSubmesh.StartIndexLocation = cylinderIndexOffset; 	cylinderSubmesh.BaseVertexLocation = cylinderVertexOffset;      将各顶点 各索引合并     子网格合并为一个大的meshgeometry 	auto totalVertexCount = 		box.Vertices.size() + 		grid.Vertices.size() + 		sphere.Vertices.size() + 		cylinder.Vertices.size();  	std::vector<Vertex> vertices(totalVertexCount);  	UINT k = 0; 	for(size_t i = 0; i < box.Vertices.size(); ++i, ++k) 	{ 		vertices[k].Pos = box.Vertices[i].Position;         vertices[k].Color = XMFLOAT4(DirectX::Colors::DarkGreen); 	}  	for(size_t i = 0; i < grid.Vertices.size(); ++i, ++k) 	{ 		vertices[k].Pos = grid.Vertices[i].Position;         vertices[k].Color = XMFLOAT4(DirectX::Colors::ForestGreen); 	}  	for(size_t i = 0; i < sphere.Vertices.size(); ++i, ++k) 	{ 		vertices[k].Pos = sphere.Vertices[i].Position;         vertices[k].Color = XMFLOAT4(DirectX::Colors::Crimson); 	}  	for(size_t i = 0; i < cylinder.Vertices.size(); ++i, ++k) 	{ 		vertices[k].Pos = cylinder.Vertices[i].Position; 		vertices[k].Color = XMFLOAT4(DirectX::Colors::SteelBlue); 	}  	std::vector<std::uint16_t> indices; 	indices.insert(indices.end(), std::begin(box.GetIndices16()), std::end(box.GetIndices16())); 	indices.insert(indices.end(), std::begin(grid.GetIndices16()), std::end(grid.GetIndices16())); 	indices.insert(indices.end(), std::begin(sphere.GetIndices16()), std::end(sphere.GetIndices16())); 	indices.insert(indices.end(), std::begin(cylinder.GetIndices16()), std::end(cylinder.GetIndices16()));      const UINT vbByteSize = (UINT)vertices.size() * sizeof(Vertex);     const UINT ibByteSize = (UINT)indices.size()  * sizeof(std::uint16_t);  	auto geo = std::make_unique<MeshGeometry>(); 	geo->Name = "shapeGeo";  	ThrowIfFailed(D3DCreateBlob(vbByteSize, &geo->VertexBufferCPU)); 	CopyMemory(geo->VertexBufferCPU->GetBufferPointer(), vertices.data(), vbByteSize);  	ThrowIfFailed(D3DCreateBlob(ibByteSize, &geo->IndexBufferCPU)); 	CopyMemory(geo->IndexBufferCPU->GetBufferPointer(), indices.data(), ibByteSize);  	geo->VertexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(), 		mCommandList.Get(), vertices.data(), vbByteSize, geo->VertexBufferUploader);  	geo->IndexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(), 		mCommandList.Get(), indices.data(), ibByteSize, geo->IndexBufferUploader);  	geo->VertexByteStride = sizeof(Vertex); 	geo->VertexBufferByteSize = vbByteSize; 	geo->IndexFormat = DXGI_FORMAT_R16_UINT; 	geo->IndexBufferByteSize = ibByteSize;  	geo->DrawArgs["box"] = boxSubmesh; 	geo->DrawArgs["grid"] = gridSubmesh; 	geo->DrawArgs["sphere"] = sphereSubmesh; 	geo->DrawArgs["cylinder"] = cylinderSubmesh;  	mGeometries[geo->Name] = std::move(geo); } 

定义具体渲染项

在完成构建几何体之后 我们根据上一步创建的meshgeometry 来提取submeshgeometry 然后 里面的信息 根据需要创建相应的渲染项 并填写相应的内容

void ShapesApp::BuildRenderItems() { 	auto boxRitem = std::make_unique<RenderItem>(); 	XMStoreFloat4x4(&boxRitem->World, XMMatrixScaling(2.0f, 2.0f, 2.0f)*XMMatrixTranslation(0.0f, 0.5f, 0.0f)); 	boxRitem->ObjCBIndex = 0; 	boxRitem->Geo = mGeometries["shapeGeo"].get(); 	boxRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; 	boxRitem->IndexCount = boxRitem->Geo->DrawArgs["box"].IndexCount; 	boxRitem->StartIndexLocation = boxRitem->Geo->DrawArgs["box"].StartIndexLocation; 	boxRitem->BaseVertexLocation = boxRitem->Geo->DrawArgs["box"].BaseVertexLocation; 	mAllRitems.push_back(std::move(boxRitem));      auto gridRitem = std::make_unique<RenderItem>();     gridRitem->World = MathHelper::Identity4x4(); 	gridRitem->ObjCBIndex = 1; 	gridRitem->Geo = mGeometries["shapeGeo"].get(); 	gridRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;     gridRitem->IndexCount = gridRitem->Geo->DrawArgs["grid"].IndexCount;     gridRitem->StartIndexLocation = gridRitem->Geo->DrawArgs["grid"].StartIndexLocation;     gridRitem->BaseVertexLocation = gridRitem->Geo->DrawArgs["grid"].BaseVertexLocation; 	mAllRitems.push_back(std::move(gridRitem));  	UINT objCBIndex = 2; 	for(int i = 0; i < 5; ++i) 	{ 		auto leftCylRitem = std::make_unique<RenderItem>(); 		auto rightCylRitem = std::make_unique<RenderItem>(); 		auto leftSphereRitem = std::make_unique<RenderItem>(); 		auto rightSphereRitem = std::make_unique<RenderItem>();  		XMMATRIX leftCylWorld = XMMatrixTranslation(-5.0f, 1.5f, -10.0f + i*5.0f); 		XMMATRIX rightCylWorld = XMMatrixTranslation(+5.0f, 1.5f, -10.0f + i*5.0f);  		XMMATRIX leftSphereWorld = XMMatrixTranslation(-5.0f, 3.5f, -10.0f + i*5.0f); 		XMMATRIX rightSphereWorld = XMMatrixTranslation(+5.0f, 3.5f, -10.0f + i*5.0f);  		XMStoreFloat4x4(&leftCylRitem->World, rightCylWorld); 		leftCylRitem->ObjCBIndex = objCBIndex++; 		leftCylRitem->Geo = mGeometries["shapeGeo"].get(); 		leftCylRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; 		leftCylRitem->IndexCount = leftCylRitem->Geo->DrawArgs["cylinder"].IndexCount; 		leftCylRitem->StartIndexLocation = leftCylRitem->Geo->DrawArgs["cylinder"].StartIndexLocation; 		leftCylRitem->BaseVertexLocation = leftCylRitem->Geo->DrawArgs["cylinder"].BaseVertexLocation;         此处省略 		 	}  	for(auto& e : mAllRitems) 		mOpaqueRitems.push_back(e.get()); } 

定义常量缓冲区视图

之后由于我们现在有3个pass常量缓冲区 3n个object常量缓冲区 总共3n+3个常量缓冲区 所以就需要 3n+3个cbv 同时也要拓展描述符堆的大小:

void ShapesApp::BuildDescriptorHeaps() {     UINT objCount = (UINT)mOpaqueRitems.size();      UINT numDescriptors = (objCount+1) * gNumFrameResources;     mPassCbvOffset = objCount * gNumFrameResources;      D3D12_DESCRIPTOR_HEAP_DESC cbvHeapDesc;     cbvHeapDesc.NumDescriptors = numDescriptors;     cbvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;     cbvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;     cbvHeapDesc.NodeMask = 0;     ThrowIfFailed(md3dDevice->CreateDescriptorHeap(&cbvHeapDesc,         IID_PPV_ARGS(&mCbvHeap))); } 
void ShapesApp::BuildConstantBufferViews() {     UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(ObjectConstants));      UINT objCount = (UINT)mOpaqueRitems.size();      每个帧资源中的每个object都需要一个cbv     for(int frameIndex = 0; frameIndex < gNumFrameResources; ++frameIndex)     {         auto objectCB = mFrameResources[frameIndex]->ObjectCB->Resource();         for(UINT i = 0; i < objCount; ++i)         {             D3D12_GPU_VIRTUAL_ADDRESS cbAddress = objectCB->GetGPUVirtualAddress();              // 每个物体的偏移             cbAddress += i*objCBByteSize;              // 计算在描述符堆中的偏移             int heapIndex = frameIndex*objCount + i;             auto handle = CD3DX12_CPU_DESCRIPTOR_HANDLE(mCbvHeap->GetCPUDescriptorHandleForHeapStart());             handle.Offset(heapIndex, mCbvSrvUavDescriptorSize);              D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;             cbvDesc.BufferLocation = cbAddress;             cbvDesc.SizeInBytes = objCBByteSize;              md3dDevice->CreateConstantBufferView(&cbvDesc, handle);         }     }      UINT passCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(PassConstants));     每个帧资源都要一个pass 描述符     for(int frameIndex = 0; frameIndex < gNumFrameResources; ++frameIndex)     {         auto passCB = mFrameResources[frameIndex]->PassCB->Resource();         D3D12_GPU_VIRTUAL_ADDRESS cbAddress = passCB->GetGPUVirtualAddress();          计算偏移         int heapIndex = mPassCbvOffset + frameIndex;         auto handle = CD3DX12_CPU_DESCRIPTOR_HANDLE(mCbvHeap->GetCPUDescriptorHandleForHeapStart());         handle.Offset(heapIndex, mCbvSrvUavDescriptorSize);          D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;         cbvDesc.BufferLocation = cbAddress;         cbvDesc.SizeInBytes = passCBByteSize;                  md3dDevice->CreateConstantBufferView(&cbvDesc, handle);     } } 

绘制

最后一步是绘制每个渲染项 :

void ShapesApp::DrawRenderItems(ID3D12GraphicsCommandList* cmdList, const std::vector<RenderItem*>& ritems) {     UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(ObjectConstants));   	auto objectCB = mCurrFrameResource->ObjectCB->Resource();      for(size_t i = 0; i < ritems.size(); ++i)     {         auto ri = ritems[i];          cmdList->IASetVertexBuffers(0, 1, &ri->Geo->VertexBufferView());         cmdList->IASetIndexBuffer(&ri->Geo->IndexBufferView());         cmdList->IASetPrimitiveTopology(ri->PrimitiveType);                   UINT cbvIndex = mCurrFrameResourceIndex*(UINT)mOpaqueRitems.size() + ri->ObjCBIndex;         auto cbvHandle = CD3DX12_GPU_DESCRIPTOR_HANDLE(mCbvHeap->GetGPUDescriptorHandleForHeapStart());         cbvHandle.Offset(cbvIndex, mCbvSrvUavDescriptorSize);          cmdList->SetGraphicsRootDescriptorTable(0, cbvHandle);          cmdList->DrawIndexedInstanced(ri->IndexCount, 1, ri->StartIndexLocation, ri->BaseVertexLocation, 0);     } } 

细探根签名

根签名由一系列根参数构成 根参数主要有以下三种类型
d3d12龙书阅读----绘制几何体(下)

我们可以创建出任意组合的根签名 只要不超过64 DWORD大小 根常量使用方便 无需使用相应的常量缓冲区 与 cbv堆,但是假如我们使用根常量存储mvp矩阵,16个float元素需要16个DWORD 即需要16个根常量 大幅消耗了根签名的空间 所以在使用时我们要灵活组合

根签名结构体定义:

typedef struct D3D12_ROOT_PARAMETER     {     D3D12_ROOT_PARAMETER_TYPE ParameterType;     union          {         D3D12_ROOT_DESCRIPTOR_TABLE DescriptorTable;         D3D12_ROOT_CONSTANTS Constants;         D3D12_ROOT_DESCRIPTOR Descriptor;         } 	;     D3D12_SHADER_VISIBILITY ShaderVisibility;     } 	D3D12_ROOT_PARAMETER;  

其中ParameterType的定义是根参数的类型,包括描述符表,根常量,cbv根描述符,srv根描述符,uav根描述符:
d3d12龙书阅读----绘制几何体(下)
ShaderVisibility代表着着色器可见性:
d3d12龙书阅读----绘制几何体(下)

创建 DescriptorTable Constants Descriptor

DescriptorTable :
描述符表的定义可以借助CD3DX12_DESCRIPTOR_RANGE的init方法

struct CD3DX12_DESCRIPTOR_RANGE : public D3D12_DESCRIPTOR_RANGE {     CD3DX12_DESCRIPTOR_RANGE() { }     explicit CD3DX12_DESCRIPTOR_RANGE(const D3D12_DESCRIPTOR_RANGE &o) :         D3D12_DESCRIPTOR_RANGE(o)     {}     CD3DX12_DESCRIPTOR_RANGE(         D3D12_DESCRIPTOR_RANGE_TYPE rangeType,         UINT numDescriptors,         UINT baseShaderRegister,         UINT registerSpace = 0,         UINT offsetInDescriptorsFromTableStart =         D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND)     {         Init(rangeType, numDescriptors, baseShaderRegister, registerSpace, offsetInDescriptorsFromTableStart);     }          inline void Init(         D3D12_DESCRIPTOR_RANGE_TYPE rangeType,         UINT numDescriptors,         UINT baseShaderRegister,         UINT registerSpace = 0,         UINT offsetInDescriptorsFromTableStart =         D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND)     {         Init(*this, rangeType, numDescriptors, baseShaderRegister, registerSpace, offsetInDescriptorsFromTableStart);     } } 

其中D3D12_DESCRIPTOR_RANGE_TYPE rangeType定义为:
d3d12龙书阅读----绘制几何体(下)
numDescriptors代表着范围内描述符的数量
baseShaderRegister:
d3d12龙书阅读----绘制几何体(下)

d3d12龙书阅读----绘制几何体(下)
然后使用InitAsDescriptorTable创建 :

 CD3DX12_DESCRIPTOR_RANGE cbvTable0;  cbvTable0.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);   CD3DX12_DESCRIPTOR_RANGE cbvTable1;  cbvTable1.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 1);  CD3DX12_ROOT_PARAMETER slotRootParameter[2];  slotRootParameter[0].InitAsDescriptorTable(1, &cbvTable0);  slotRootParameter[1].InitAsDescriptorTable(1, &cbvTable1); 

根描述符与根常量的定义可以直接使用如下方法创建:

static inline void InitAsConstants(     _Out_ D3D12_ROOT_PARAMETER &rootParam,     UINT num32BitValues,     UINT shaderRegister,     UINT registerSpace = 0,     D3D12_SHADER_VISIBILITY visibility = D3D12_SHADER_VISIBILITY_ALL) {     rootParam.ParameterType = D3D12_ROOT_PARAMETER_TYPE_32BIT_CONSTANTS;     rootParam.ShaderVisibility = visibility;     CD3DX12_ROOT_CONSTANTS::Init(rootParam.Constants, num32BitValues, shaderRegister, registerSpace); }  static inline void InitAsConstantBufferView(     _Out_ D3D12_ROOT_PARAMETER &rootParam,     UINT shaderRegister,     UINT registerSpace = 0,     D3D12_SHADER_VISIBILITY visibility = D3D12_SHADER_VISIBILITY_ALL) {     rootParam.ParameterType = D3D12_ROOT_PARAMETER_TYPE_CBV;     rootParam.ShaderVisibility = visibility;     CD3DX12_ROOT_DESCRIPTOR::Init(rootParam.Descriptor, shaderRegister, registerSpace); } 

例子:
d3d12龙书阅读----绘制几何体(下)
d3d12龙书阅读----绘制几何体(下)

不同类型的根签名绑定着色器寄存器

将不同类型的根签名绑定着色器寄存器需要使用不同的命令:

根常量:ID3D12GraphicsCommandList::SetComputeRoot32BitConstants
https://learn.microsoft.com/zh-cn/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-setcomputeroot32bitconstants
根描述符:ID3D12GraphicsCommandList::SetComputeRootConstantBufferView
https://learn.microsoft.com/zh-cn/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-setcomputerootconstantbufferview
描述符表:ID3D12GraphicsCommandList::SetComputeRootDescriptorTable
https://learn.microsoft.com/zh-cn/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-setcomputerootdescriptortable
其中根常量与根描述符都不需要涉及描述符堆

发表评论

评论已关闭。

相关文章