3D Object Detection Essay Reading 2024.04.05

EMIFF

  1. 论文:https://arxiv.org/abs/2303.10975

  2. 代码:https://github.com/Bosszhe/EMIFF

3D Object Detection Essay Reading 2024.04.05

​ 本文提出了一种新的基于摄像机的三维检测框架,增强型多尺度图像特征融合(EMIFF)。虽然EMIFF的输入是2D图像,但是它的neck层的结构设计应该普适于点云的3D目标检测,同时其中的MFC等模块可以简单地被替换成更先进的其他组件。

​ 为了充分利用车辆和基础设施的整体视角,本文提出了多尺度交叉注意MCA(包含了MFC和MFS)和相机感知通道掩蔽CCM模块,以在尺度、空间和通道(MFC尺度级增强、MFS空间级增强、CCM通道级增强)级别增强基础设施和车辆特征,从而纠正相机异步引入的姿态误差。我们还引入了一个特征压缩FC模块,该模块具有信道和空间压缩块,以提高传输效率。

MFC

3D Object Detection Essay Reading 2024.04.05

​ MFC模块首先应用于多尺度特征。由于姿态误差会导致2D平面上投影位置和地面真实位置之间的位移,我们对每个比例特征应用DCN,以允许每个像素获得其周围的空间信息。然后,通过UpConv块将不同尺度的特征上采样到相同的尺寸。

class double_conv(nn.Module):      def __init__(self, in_ch, out_ch):         super(double_conv, self).__init__()          self.conv = nn.Sequential(             nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1),             nn.BatchNorm2d(out_ch),             nn.ReLU(),             nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1),             nn.BatchNorm2d(out_ch),             nn.ReLU()         )      def forward(self, x):         x = self.conv(x)         return x      class DCN_Up_Conv_List(nn.Module):      def __init__(self, neck_dcn, channels):         super(DCN_Up_Conv_List, self).__init__()           self.upconv0 = nn.Sequential(             double_conv(channels,channels),         )          self.upconv1 = nn.Sequential(             nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),             double_conv(channels,channels),         )         self.upconv2 = nn.Sequential(             nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),             double_conv(channels,channels),             nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),             double_conv(channels,channels),         )         self.upconv3 = nn.Sequential(             nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),             double_conv(channels,channels),             nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),             double_conv(channels,channels),             nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),             double_conv(channels,channels),         )          self.dcn0 = build_neck(neck_dcn)         self.dcn1 = build_neck(neck_dcn)         self.dcn2 = build_neck(neck_dcn)         self.dcn3 = build_neck(neck_dcn)      def forward(self, x):         assert x.__len__() == 4         x0 = self.dcn0(x[0])         x0 = self.upconv0(x0)          x1 = self.dcn1(x[1])         x1 = self.upconv1(x1)          x2 = self.dcn2(x[2])         x2 = self.upconv2(x2)          x3 = self.dcn3(x[3])         x3 = self.upconv3(x3)          return [x0,x1,x2,x3] 

MFS

3D Object Detection Essay Reading 2024.04.05

​ MFS应用MeanPooling操作获得不同尺度的基础设施特征的表示,而不同尺度的车辆特征首先通过mean操作融合,然后通过MeanPooling进行细化。为了寻找不同尺度下车辆特征和基础设施特征之间的相关性,交叉注意应用于基础设施表示作为关键,车辆表示作为查询,生成每个尺度m的注意权重ω m inf。我们计算特征^fM inf和权重ω m inf之间的乘积。MCA的最终输出是增强的基础设施图像特征finf和车辆图像特征fveh。

def attention(query, key, mask=None, dropout=None):      # from IPython import embed     # embed()      "Compute 'Scaled Dot Product Attention'"     d_k = query.size(-1)     scores = torch.matmul(query, key.transpose(-2, -1))              / math.sqrt(d_k)     if mask is not None:         scores = scores.masked_fill(mask == 0, -1e9)     p_attn = F.softmax(scores, dim = -1)     if dropout is not None:         p_attn = dropout(p_attn)     return p_attn  def extract_img_feat(self, img, img_metas):     """Extract features from images."""     bs = img.shape[0]     img_v = img[:,0,...]     img_i = img[:,1,...]      x_v = self.backbone_v(img_v)     x_v = self.neck_v(x_v)     x_v = self.dcn_up_conv_v(list(x_v))     x_v_tensor = torch.stack(x_v).permute(1,0,2,3,4)     x_v_out = torch.mean(x_v_tensor,dim=1)      x_i = self.backbone_i(img_i)     x_i = self.neck_i(x_i)     # from IPython import embed     # embed(header='compress')      # Add compression encoder-decoder     x_i = self.inf_compressor(x_i)      x_i = self.dcn_up_conv_i(list(x_i))     x_i_tensor = torch.stack(x_i).permute(1,0,2,3,4)      # query.shape[B,C]     # key.shape[B,N_levels,C]     query = torch.mean(x_v_out,dim=(-2,-1))[:,None,:]     key = torch.mean(x_i_tensor,dim=(-2,-1))     weights_i = attention(query,key).squeeze(1)      # print('attention_weights',weights_i)      x_i_out = (weights_i[:,:,None,None,None] * x_i_tensor).sum(dim=1)      return tuple((x_v_out, x_i_out)) 

CCM

3D Object Detection Essay Reading 2024.04.05

​ CCM将学习一个通道掩码来衡量通道之间的重要性。由于不同的通道表示不同距离的目标信息,这些信息与相机参数密切相关,因此将相机参数作为先验来增强图像特征是直观的。首先,将摄像机的内、外特性拉伸成一维并进行连接。然后,使用MLP将它们放大到特征的维数C,以生成通道掩模Mveh/inf。最后,Mveh/inf用于在通道方向上重新加权图像特征fveh/inf,并获得结果f’veh/inf。

class CCMNet(nn.Module):     def __init__(self, in_channels, mid_channels, context_channels, reduction_ratio=1):         super(CCMNet, self).__init__()         self.reduce_conv = nn.Sequential(             nn.Conv2d(in_channels,                       mid_channels,                       kernel_size=3,                       stride=1,                       padding=1),             nn.BatchNorm2d(mid_channels),             nn.ReLU(inplace=True),         )         self.context_conv = nn.Conv2d(mid_channels,                                       context_channels,                                       kernel_size=1,                                       stride=1,                                       padding=0)         self.bn = nn.BatchNorm1d(16)         self.context_mlp = Mlp(16, mid_channels, mid_channels)         self.context_se = SE_Inception_Layer(mid_channels,reduction_ratio=reduction_ratio)  # NOTE: add camera-aware          # self.context_se = CASELayer(mid_channels,reduction_ratio=8)  # NOTE: add camera-aware          def ida_mat_cal(self,img_meta):         img_scale_factor = (img_meta['scale_factor'][:2]                 if 'scale_factor' in img_meta.keys() else 1)          img_shape = img_meta['img_shape'][:2]         orig_h, orig_w = img_shape          ida_rot = torch.eye(2)         ida_tran = torch.zeros(2)          ida_rot *= img_scale_factor         # ida_tran -= torch.Tensor(crop[:2])         if 'flip' in img_meta.keys() and img_meta['flip']:             A = torch.Tensor([[-1, 0], [0, 1]])             b = torch.Tensor([orig_w, 0])             ida_rot = A.matmul(ida_rot)             ida_tran = A.matmul(ida_tran) + b          ida_mat = ida_rot.new_zeros(4, 4)         ida_mat[3, 3] = 1         ida_mat[2, 2] = 1         ida_mat[:2, :2] = ida_rot         ida_mat[:2, 3] = ida_tran          return ida_mat      def forward(self, x_v, x_i, img_metas):         # x [bs,num_cams,C,H,W]         bs, C, H, W = x_v.shape         num_cams = 2          x = torch.stack((x_v,x_i),dim=1).reshape(-1, C, H, W)          extrinsic_v_list = list()         extrinsic_i_list = list()         intrinsic_v_list = list()         intrinsic_i_list = list()         for img_meta in img_metas:              extrinsic_v = torch.Tensor(img_meta['lidar2img']['extrinsic'][0])             extrinsic_i = torch.Tensor(img_meta['lidar2img']['extrinsic'][1])             intrinsic_v = torch.Tensor(img_meta['lidar2img']['intrinsic'][0])             intrinsic_i = torch.Tensor(img_meta['lidar2img']['intrinsic'][1])             # from IPython import embed             # embed(header='ida')             ida_mat = self.ida_mat_cal(img_meta)              intrinsic_v = ida_mat @ intrinsic_v             intrinsic_i = ida_mat @ intrinsic_i              extrinsic_v_list.append(extrinsic_v)             extrinsic_i_list.append(extrinsic_i)             intrinsic_v_list.append(intrinsic_v)             intrinsic_i_list.append(intrinsic_i)          extrinsic_v = torch.stack(extrinsic_v_list)         extrinsic_i = torch.stack(extrinsic_i_list)         intrinsic_v = torch.stack(intrinsic_v_list)         intrinsic_i = torch.stack(intrinsic_i_list)          extrinsic = torch.stack((extrinsic_v,extrinsic_i),dim=1)          intrinsic = torch.stack((intrinsic_v,intrinsic_i),dim=1)           in_mlp = torch.stack(                     (                         intrinsic[..., 0, 0],                         intrinsic[..., 1, 1],                         intrinsic[..., 0, 2],                         intrinsic[ ..., 1, 2],                     ),                     dim=-1                 )          # from IPython import embed         # embed(header='DCMNet')         ex_mlp = extrinsic[...,:3,:].view(bs,num_cams,-1)         mlp_input = torch.cat((in_mlp,ex_mlp),dim=-1)         mlp_input = mlp_input.reshape(-1,mlp_input.shape[-1]).to(x.device)          mlp_input = self.bn(mlp_input)         x = self.reduce_conv(x)         # context_se = self.context_mlp(mlp_input)[..., None, None]         context_se = self.context_mlp(mlp_input)         context = self.context_se(x, context_se)         context = self.context_conv(context)          context = context.reshape(bs,num_cams,C,H,W)         x_v_out = context[:,0,...]         x_i_out = context[:,1,...]          # from IPython import embed         # embed(header='DCMNet end')         return tuple((x_v_out, x_i_out)) 

发表评论

评论已关闭。

相关文章