EMIFF

本文提出了一种新的基于摄像机的三维检测框架,增强型多尺度图像特征融合(EMIFF)。虽然EMIFF的输入是2D图像,但是它的neck层的结构设计应该普适于点云的3D目标检测,同时其中的MFC等模块可以简单地被替换成更先进的其他组件。
为了充分利用车辆和基础设施的整体视角,本文提出了多尺度交叉注意MCA(包含了MFC和MFS)和相机感知通道掩蔽CCM模块,以在尺度、空间和通道(MFC尺度级增强、MFS空间级增强、CCM通道级增强)级别增强基础设施和车辆特征,从而纠正相机异步引入的姿态误差。我们还引入了一个特征压缩FC模块,该模块具有信道和空间压缩块,以提高传输效率。
MFC

MFC模块首先应用于多尺度特征。由于姿态误差会导致2D平面上投影位置和地面真实位置之间的位移,我们对每个比例特征应用DCN,以允许每个像素获得其周围的空间信息。然后,通过UpConv块将不同尺度的特征上采样到相同的尺寸。
class double_conv(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU() ) def forward(self, x): x = self.conv(x) return x class DCN_Up_Conv_List(nn.Module): def __init__(self, neck_dcn, channels): super(DCN_Up_Conv_List, self).__init__() self.upconv0 = nn.Sequential( double_conv(channels,channels), ) self.upconv1 = nn.Sequential( nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), double_conv(channels,channels), ) self.upconv2 = nn.Sequential( nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), double_conv(channels,channels), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), double_conv(channels,channels), ) self.upconv3 = nn.Sequential( nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), double_conv(channels,channels), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), double_conv(channels,channels), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), double_conv(channels,channels), ) self.dcn0 = build_neck(neck_dcn) self.dcn1 = build_neck(neck_dcn) self.dcn2 = build_neck(neck_dcn) self.dcn3 = build_neck(neck_dcn) def forward(self, x): assert x.__len__() == 4 x0 = self.dcn0(x[0]) x0 = self.upconv0(x0) x1 = self.dcn1(x[1]) x1 = self.upconv1(x1) x2 = self.dcn2(x[2]) x2 = self.upconv2(x2) x3 = self.dcn3(x[3]) x3 = self.upconv3(x3) return [x0,x1,x2,x3]
MFS

MFS应用MeanPooling操作获得不同尺度的基础设施特征的表示,而不同尺度的车辆特征首先通过mean操作融合,然后通过MeanPooling进行细化。为了寻找不同尺度下车辆特征和基础设施特征之间的相关性,交叉注意应用于基础设施表示作为关键,车辆表示作为查询,生成每个尺度m的注意权重ω m inf。我们计算特征^fM inf和权重ω m inf之间的乘积。MCA的最终输出是增强的基础设施图像特征finf和车辆图像特征fveh。
def attention(query, key, mask=None, dropout=None): # from IPython import embed # embed() "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return p_attn def extract_img_feat(self, img, img_metas): """Extract features from images.""" bs = img.shape[0] img_v = img[:,0,...] img_i = img[:,1,...] x_v = self.backbone_v(img_v) x_v = self.neck_v(x_v) x_v = self.dcn_up_conv_v(list(x_v)) x_v_tensor = torch.stack(x_v).permute(1,0,2,3,4) x_v_out = torch.mean(x_v_tensor,dim=1) x_i = self.backbone_i(img_i) x_i = self.neck_i(x_i) # from IPython import embed # embed(header='compress') # Add compression encoder-decoder x_i = self.inf_compressor(x_i) x_i = self.dcn_up_conv_i(list(x_i)) x_i_tensor = torch.stack(x_i).permute(1,0,2,3,4) # query.shape[B,C] # key.shape[B,N_levels,C] query = torch.mean(x_v_out,dim=(-2,-1))[:,None,:] key = torch.mean(x_i_tensor,dim=(-2,-1)) weights_i = attention(query,key).squeeze(1) # print('attention_weights',weights_i) x_i_out = (weights_i[:,:,None,None,None] * x_i_tensor).sum(dim=1) return tuple((x_v_out, x_i_out))
CCM

CCM将学习一个通道掩码来衡量通道之间的重要性。由于不同的通道表示不同距离的目标信息,这些信息与相机参数密切相关,因此将相机参数作为先验来增强图像特征是直观的。首先,将摄像机的内、外特性拉伸成一维并进行连接。然后,使用MLP将它们放大到特征的维数C,以生成通道掩模Mveh/inf。最后,Mveh/inf用于在通道方向上重新加权图像特征fveh/inf,并获得结果f’veh/inf。
class CCMNet(nn.Module): def __init__(self, in_channels, mid_channels, context_channels, reduction_ratio=1): super(CCMNet, self).__init__() self.reduce_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), ) self.context_conv = nn.Conv2d(mid_channels, context_channels, kernel_size=1, stride=1, padding=0) self.bn = nn.BatchNorm1d(16) self.context_mlp = Mlp(16, mid_channels, mid_channels) self.context_se = SE_Inception_Layer(mid_channels,reduction_ratio=reduction_ratio) # NOTE: add camera-aware # self.context_se = CASELayer(mid_channels,reduction_ratio=8) # NOTE: add camera-aware def ida_mat_cal(self,img_meta): img_scale_factor = (img_meta['scale_factor'][:2] if 'scale_factor' in img_meta.keys() else 1) img_shape = img_meta['img_shape'][:2] orig_h, orig_w = img_shape ida_rot = torch.eye(2) ida_tran = torch.zeros(2) ida_rot *= img_scale_factor # ida_tran -= torch.Tensor(crop[:2]) if 'flip' in img_meta.keys() and img_meta['flip']: A = torch.Tensor([[-1, 0], [0, 1]]) b = torch.Tensor([orig_w, 0]) ida_rot = A.matmul(ida_rot) ida_tran = A.matmul(ida_tran) + b ida_mat = ida_rot.new_zeros(4, 4) ida_mat[3, 3] = 1 ida_mat[2, 2] = 1 ida_mat[:2, :2] = ida_rot ida_mat[:2, 3] = ida_tran return ida_mat def forward(self, x_v, x_i, img_metas): # x [bs,num_cams,C,H,W] bs, C, H, W = x_v.shape num_cams = 2 x = torch.stack((x_v,x_i),dim=1).reshape(-1, C, H, W) extrinsic_v_list = list() extrinsic_i_list = list() intrinsic_v_list = list() intrinsic_i_list = list() for img_meta in img_metas: extrinsic_v = torch.Tensor(img_meta['lidar2img']['extrinsic'][0]) extrinsic_i = torch.Tensor(img_meta['lidar2img']['extrinsic'][1]) intrinsic_v = torch.Tensor(img_meta['lidar2img']['intrinsic'][0]) intrinsic_i = torch.Tensor(img_meta['lidar2img']['intrinsic'][1]) # from IPython import embed # embed(header='ida') ida_mat = self.ida_mat_cal(img_meta) intrinsic_v = ida_mat @ intrinsic_v intrinsic_i = ida_mat @ intrinsic_i extrinsic_v_list.append(extrinsic_v) extrinsic_i_list.append(extrinsic_i) intrinsic_v_list.append(intrinsic_v) intrinsic_i_list.append(intrinsic_i) extrinsic_v = torch.stack(extrinsic_v_list) extrinsic_i = torch.stack(extrinsic_i_list) intrinsic_v = torch.stack(intrinsic_v_list) intrinsic_i = torch.stack(intrinsic_i_list) extrinsic = torch.stack((extrinsic_v,extrinsic_i),dim=1) intrinsic = torch.stack((intrinsic_v,intrinsic_i),dim=1) in_mlp = torch.stack( ( intrinsic[..., 0, 0], intrinsic[..., 1, 1], intrinsic[..., 0, 2], intrinsic[ ..., 1, 2], ), dim=-1 ) # from IPython import embed # embed(header='DCMNet') ex_mlp = extrinsic[...,:3,:].view(bs,num_cams,-1) mlp_input = torch.cat((in_mlp,ex_mlp),dim=-1) mlp_input = mlp_input.reshape(-1,mlp_input.shape[-1]).to(x.device) mlp_input = self.bn(mlp_input) x = self.reduce_conv(x) # context_se = self.context_mlp(mlp_input)[..., None, None] context_se = self.context_mlp(mlp_input) context = self.context_se(x, context_se) context = self.context_conv(context) context = context.reshape(bs,num_cams,C,H,W) x_v_out = context[:,0,...] x_i_out = context[:,1,...] # from IPython import embed # embed(header='DCMNet end') return tuple((x_v_out, x_i_out))