免费背景音人声分离解决方案MVSEP-MDX23,足以和Spleeter分庭抗礼

免费背景音人声分离解决方案MVSEP-MDX23,足以和Spleeter分庭抗礼

在音视频领域,把已经发布的混音歌曲或者音频文件逆向分离一直是世界性的课题。音波混合的物理特性导致在没有原始工程文件的情况下,将其还原和分离是一件很有难度的事情。

言及背景音人声分离技术,就不能不提Spleeter,它是一种用于音频源分离(音乐分离)的开源深度学习算法,由Deezer研究团队开发。使用的是一个性能取向的音源分离算法,并且为用户提供了已经预训练好的模型,能够开箱即用,这也是Spleeter泛用性高的原因之一,关于Spleeter,请移步:人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10),这里不再赘述。

MVSEP-MDX23背景音人声分离技术由Demucs研发,Demucs来自Facebook Research团队,它的发源晚于Spleeter,早于MDX-Net,并且经历过4个大版本的迭代,每一代的模型结构都被大改。Demucs的生成质量从v3开始大幅质变,一度领先行业平均水平,v4是现在最强的开源乐器分离单模型,v1和v2的网络模型被用作MDX-net其中的一部分。

本次我们基于MVSEP-MDX23来对音频的背景音和人声进行分离。

本地分离人声和背景音

如果本地离线运行MVSEP-MDX23,首先克隆代码:

git clone https://github.com/jarredou/MVSEP-MDX23-Colab_v2.git 

随后进入项目并安装依赖:

cd MVSEP-MDX23-Colab_v2   pip3 install -r requirements.txt 

随后直接进推理即可:

python3 inference.py --input_audio test.wav --output_folder ./results/ 

这里将test.wav进行人声分离,分离后的文件在results文件夹生成。

注意推理过程中会将分离模型下载到项目的models目录,极其巨大。

同时推理过程相当缓慢。

这里可以添加--single_onnx参数来提高推理速度,但音质上有一定的损失。

如果本地设备具备12G以上的显存,也可以添加--large_gpu参数来提高推理的速度。

如果本地没有N卡或者显存实在捉襟见肘,也可以通过--cpu参数来使用cpu进行推理,但是并不推荐这样做,因为本来就慢,用cpu就更慢了。

令人暖心的是,官方还利用Pyqt写了一个小的gui界面来提高操作友好度:

__author__ = 'Roman Solovyev (ZFTurbo), IPPM RAS'      if __name__ == '__main__':       import os          gpu_use = "0"       print('GPU use: {}'.format(gpu_use))       os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)      import time   import os   import numpy as np   from PyQt5.QtCore import *   from PyQt5 import QtCore   from PyQt5.QtWidgets import *   import sys   from inference import predict_with_model         root = dict()         class Worker(QObject):       finished = pyqtSignal()       progress = pyqtSignal(int)          def __init__(self, options):           super().__init__()           self.options = options          def run(self):           global root           # Here we pass the update_progress (uncalled!)           self.options['update_percent_func'] = self.update_progress           predict_with_model(self.options)           root['button_start'].setDisabled(False)           root['button_finish'].setDisabled(True)           root['start_proc'] = False           self.finished.emit()          def update_progress(self, percent):           self.progress.emit(percent)         class Ui_Dialog(object):       def setupUi(self, Dialog):           global root              Dialog.setObjectName("Settings")           Dialog.resize(370, 180)              self.checkbox_cpu = QCheckBox("Use CPU instead of GPU?", Dialog)           self.checkbox_cpu.move(30, 10)           self.checkbox_cpu.resize(320, 40)           if root['cpu']:               self.checkbox_cpu.setChecked(True)              self.checkbox_single_onnx = QCheckBox("Use single ONNX?", Dialog)           self.checkbox_single_onnx.move(30, 40)           self.checkbox_single_onnx.resize(320, 40)           if root['single_onnx']:               self.checkbox_single_onnx.setChecked(True)              self.pushButton_save = QPushButton(Dialog)           self.pushButton_save.setObjectName("pushButton_save")           self.pushButton_save.move(30, 120)           self.pushButton_save.resize(150, 35)              self.pushButton_cancel = QPushButton(Dialog)           self.pushButton_cancel.setObjectName("pushButton_cancel")           self.pushButton_cancel.move(190, 120)           self.pushButton_cancel.resize(150, 35)              self.retranslateUi(Dialog)           QtCore.QMetaObject.connectSlotsByName(Dialog)           self.Dialog = Dialog              # connect the two functions           self.pushButton_save.clicked.connect(self.return_save)           self.pushButton_cancel.clicked.connect(self.return_cancel)          def retranslateUi(self, Dialog):           _translate = QtCore.QCoreApplication.translate           Dialog.setWindowTitle(_translate("Settings", "Settings"))           self.pushButton_cancel.setText(_translate("Settings", "Cancel"))           self.pushButton_save.setText(_translate("Settings", "Save settings"))          def return_save(self):           global root           # print("save")           root['cpu'] = self.checkbox_cpu.isChecked()           root['single_onnx'] = self.checkbox_single_onnx.isChecked()           self.Dialog.close()          def return_cancel(self):           global root           # print("cancel")           self.Dialog.close()         class MyWidget(QWidget):       def __init__(self):           super().__init__()           self.initUI()          def initUI(self):           self.resize(560, 360)           self.move(300, 300)           self.setWindowTitle('MVSEP music separation model')           self.setAcceptDrops(True)          def dragEnterEvent(self, event):           if event.mimeData().hasUrls():               event.accept()           else:               event.ignore()          def dropEvent(self, event):           global root           files = [u.toLocalFile() for u in event.mimeData().urls()]           txt = ''           root['input_files'] = []           for f in files:               root['input_files'].append(f)               txt += f + 'n'           root['input_files_list_text_area'].insertPlainText(txt)           root['progress_bar'].setValue(0)          def execute_long_task(self):           global root              if len(root['input_files']) == 0 and 1:               QMessageBox.about(root['w'], "Error", "No input files specified!")               return              root['progress_bar'].show()           root['button_start'].setDisabled(True)           root['button_finish'].setDisabled(False)           root['start_proc'] = True              options = {               'input_audio': root['input_files'],               'output_folder': root['output_folder'],               'cpu': root['cpu'],               'single_onnx': root['single_onnx'],               'overlap_large': 0.6,               'overlap_small': 0.5,           }              self.update_progress(0)           self.thread = QThread()           self.worker = Worker(options)           self.worker.moveToThread(self.thread)              self.thread.started.connect(self.worker.run)           self.worker.finished.connect(self.thread.quit)           self.worker.finished.connect(self.worker.deleteLater)           self.thread.finished.connect(self.thread.deleteLater)           self.worker.progress.connect(self.update_progress)              self.thread.start()          def stop_separation(self):           global root           self.thread.terminate()           root['button_start'].setDisabled(False)           root['button_finish'].setDisabled(True)           root['start_proc'] = False           root['progress_bar'].hide()          def update_progress(self, progress):           global root           root['progress_bar'].setValue(progress)          def open_settings(self):           global root           dialog = QDialog()           dialog.ui = Ui_Dialog()           dialog.ui.setupUi(dialog)           dialog.exec_()         def dialog_select_input_files():       global root       files, _ = QFileDialog.getOpenFileNames(           None,           "QFileDialog.getOpenFileNames()",           "",           "All Files (*);;Audio Files (*.wav, *.mp3, *.flac)",       )       if files:           txt = ''           root['input_files'] = []           for f in files:               root['input_files'].append(f)               txt += f + 'n'           root['input_files_list_text_area'].insertPlainText(txt)           root['progress_bar'].setValue(0)       return files         def dialog_select_output_folder():       global root       foldername = QFileDialog.getExistingDirectory(           None,           "Select Directory"       )       root['output_folder'] = foldername + '/'       root['output_folder_line_edit'].setText(root['output_folder'])       return foldername         def create_dialog():       global root       app = QApplication(sys.argv)          w = MyWidget()          root['input_files'] = []       root['output_folder'] = os.path.dirname(os.path.abspath(__file__)) + '/results/'       root['cpu'] = False       root['single_onnx'] = False          button_select_input_files = QPushButton(w)       button_select_input_files.setText("Input audio files")       button_select_input_files.clicked.connect(dialog_select_input_files)       button_select_input_files.setFixedHeight(35)       button_select_input_files.setFixedWidth(150)       button_select_input_files.move(30, 20)          input_files_list_text_area = QTextEdit(w)       input_files_list_text_area.setReadOnly(True)       input_files_list_text_area.setLineWrapMode(QTextEdit.NoWrap)       font = input_files_list_text_area.font()       font.setFamily("Courier")       font.setPointSize(10)       input_files_list_text_area.move(30, 60)       input_files_list_text_area.resize(500, 100)          button_select_output_folder = QPushButton(w)       button_select_output_folder.setText("Output folder")       button_select_output_folder.setFixedHeight(35)       button_select_output_folder.setFixedWidth(150)       button_select_output_folder.clicked.connect(dialog_select_output_folder)       button_select_output_folder.move(30, 180)          output_folder_line_edit = QLineEdit(w)       output_folder_line_edit.setReadOnly(True)       font = output_folder_line_edit.font()       font.setFamily("Courier")       font.setPointSize(10)       output_folder_line_edit.move(30, 220)       output_folder_line_edit.setFixedWidth(500)       output_folder_line_edit.setText(root['output_folder'])          progress_bar = QProgressBar(w)       # progress_bar.move(30, 310)       progress_bar.setValue(0)       progress_bar.setGeometry(30, 310, 500, 35)       progress_bar.setAlignment(QtCore.Qt.AlignCenter)       progress_bar.hide()       root['progress_bar'] = progress_bar          button_start = QPushButton('Start separation', w)       button_start.clicked.connect(w.execute_long_task)       button_start.setFixedHeight(35)       button_start.setFixedWidth(150)       button_start.move(30, 270)          button_finish = QPushButton('Stop separation', w)       button_finish.clicked.connect(w.stop_separation)       button_finish.setFixedHeight(35)       button_finish.setFixedWidth(150)       button_finish.move(200, 270)       button_finish.setDisabled(True)          button_settings = QPushButton('⚙', w)       button_settings.clicked.connect(w.open_settings)       button_settings.setFixedHeight(35)       button_settings.setFixedWidth(35)       button_settings.move(495, 270)       button_settings.setDisabled(False)          mvsep_link = QLabel(w)       mvsep_link.setOpenExternalLinks(True)       font = mvsep_link.font()       font.setFamily("Courier")       font.setPointSize(10)       mvsep_link.move(415, 30)       mvsep_link.setText('Powered by <a href="https://mvsep.com">MVSep.com</a>')          root['w'] = w       root['input_files_list_text_area'] = input_files_list_text_area       root['output_folder_line_edit'] = output_folder_line_edit       root['button_start'] = button_start       root['button_finish'] = button_finish       root['button_settings'] = button_settings          # w.showMaximized()       w.show()       sys.exit(app.exec_())         if __name__ == '__main__':       create_dialog() 

效果如下:

免费背景音人声分离解决方案MVSEP-MDX23,足以和Spleeter分庭抗礼

界面虽然朴素,但相当实用,Spleeter可没给我们提供这个待遇。

Colab云端分离人声和背景音

托Google的福,我们也可以在Colab云端使用MVSEP-MDX23:

https://colab.research.google.com/github/jarredou/MVSEP-MDX23-Colab_v2/blob/v2.3/MVSep-MDX23-Colab.ipynb#scrollTo=uWX5WOqjU0QC 

首先安装MVSEP-MDX23:

#@markdown #Installation   #@markdown *Run this cell to install MVSep-MDX23*   print('Installing... This will take 1 minute...')   %cd /content   from google.colab import drive   drive.mount('/content/drive')   !git clone https://github.com/jarredou/MVSEP-MDX23-Colab_v2.git &> /dev/null   %cd /content/MVSEP-MDX23-Colab_v2   !pip install -r requirements.txt &> /dev/null   # onnxruntime-gpu nightly fix for cuda12.2   !python -m pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/   print('Installation done !') 

随后编写推理代码:

#@markdown #Separation   from pathlib import Path   import glob      %cd /content/MVSEP-MDX23-Colab_v2         input = '/content/drive/MyDrive' #@param {type:"string"}   output_folder = '/content/drive/MyDrive/output' #@param {type:"string"}   #@markdown ---   #@markdown *Bigshifts=1 to disable that feature*      BigShifts = 7 #@param {type:"slider", min:1, max:41, step:1}   #@markdown ---   overlap_InstVoc = 1 #@param {type:"slider", min:1, max:40, step:1}   overlap_VitLarge = 1 #@param {type:"slider", min:1, max:40, step:1}   #@markdown ---   weight_InstVoc = 8 #@param {type:"slider", min:0, max:10, step:1}   weight_VitLarge = 5 #@param {type:"slider", min:0, max:10, step:1}   #@markdown ---   use_VOCFT = False #@param {type:"boolean"}   overlap_VOCFT = 0.1 #@param {type:"slider", min:0, max:0.95, step:0.05}   weight_VOCFT = 2 #@param {type:"slider", min:0, max:10, step:1}   #@markdown ---   vocals_instru_only = True #@param {type:"boolean"}   overlap_demucs = 0.6 #@param {type:"slider", min:0, max:0.95, step:0.05}   #@markdown ---   output_format = 'PCM_16' #@param ["PCM_16", "FLOAT"]   if vocals_instru_only:       vocals_only = '--vocals_only true'   else:       vocals_only = ''         if use_VOCFT:       use_VOCFT = '--use_VOCFT true'   else:       use_VOCFT = ''      if Path(input).is_file():     file_path = input     Path(output_folder).mkdir(parents=True, exist_ok=True)     !python inference.py            --large_gpu            --weight_InstVoc {weight_InstVoc}            --weight_VOCFT {weight_VOCFT}            --weight_VitLarge {weight_VitLarge}            --input_audio "{file_path}"            --overlap_demucs {overlap_demucs}            --overlap_VOCFT {overlap_VOCFT}            --overlap_InstVoc {overlap_InstVoc}            --overlap_VitLarge {overlap_VitLarge}            --output_format {output_format}            --BigShifts {BigShifts}            --output_folder "{output_folder}"            {vocals_only}            {use_VOCFT}      else:     file_paths = sorted([f'"{glob.escape(path)}"' for path in glob.glob(input + "/*")])[:]     input_audio_args = ' '.join(file_paths)     Path(output_folder).mkdir(parents=True, exist_ok=True)     !python inference.py              --large_gpu              --weight_InstVoc {weight_InstVoc}              --weight_VOCFT {weight_VOCFT}              --weight_VitLarge {weight_VitLarge}              --input_audio {input_audio_args}              --overlap_demucs {overlap_demucs}              --overlap_VOCFT {overlap_VOCFT}              --overlap_InstVoc {int(overlap_InstVoc)}              --overlap_VitLarge {int(overlap_VitLarge)}              --output_format {output_format}              --BigShifts {BigShifts}              --output_folder "{output_folder}"              {vocals_only}              {use_VOCFT} 

这里默认使用google云盘的目录,也可以修改为当前服务器的目录地址。

结语

MVSEP-MDX23 和 Spleeter 都是音频人声背景音分离软件,作为用户,我们到底应该怎么选择?

MVSEP-MDX23 基于 Demucs4 和 MDX 神经网络架构,可以将音乐分离成“bass”、“drums”、“vocals”和“other”四个部分。MVSEP-MDX23 在 2023 年的音乐分离挑战中获得了第三名,并且在 MultiSong 数据集上的质量比较中表现出色。它提供了 Python 命令行工具和 GUI 界面,支持 CPU 和 GPU 加速,可以在本地运行。

Spleeter 是由 Deezer 开发的开源音频分离库,它使用深度学习模型将音频分离成不同的音轨,如人声、伴奏等。Spleeter 提供了预训练的模型,可以在命令行或作为 Python 库使用。它的优势在于易用性和灵活性,可以根据需要分离不同数量的音轨。

总的来说,MVSEP-MDX23 在音频分离的性能和精度上表现出色,尤其适合需要高质量音频分离的专业用户。而 Spleeter 则更适合普通用户和开发者,因为它易于使用,并且具有更多的定制选项。

发表评论

评论已关闭。

相关文章