[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

对象检测是迄今为止计算机视觉中最重要的应用领域。然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少。小目标物体的定义通常有两种方式。一种是绝对尺度定义,即以物体的像素尺寸来判断是否为小目标,如在COCO数据集中,尺寸小于32×32像素的目标被判定为小目标。另外一种是相对尺度定义,即以物体在图像中的占比面积比例来判断是否为小目标,例如国际光学工程学会SPIE定义,若目标尺寸小于原图的0.12%则可以判定成小目标。
SAHI: Slicing Aided Hyper Inference(切片辅助超推理)通过图像切片的方式来检测小目标。SAHI检测过程可以描述为:通过滑动窗口将图像切分成若干区域,各个区域分别进行预测,同时也对整张图片进行推理。然后将各个区域的预测结果和整张图片的预测结果合并,最后用NMS(非极大值抑制)进行过滤。用动图表示该识别过程如下:

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

SAHI的官方仓库地址为:sahi。关于SAHI的使用可以阅读官方demo和官方文档:sahi-demosahi-docs。如果想进一步了解SAHI具体工作性能和原理,可以阅读官方发表的论文:Slicing Aided Hyper Inference and Fine-Tuning for Small Object Detection
SAHI安装指令如下:

pip install sahi

本文所有算法展示效果和代码见:

github: Python-Study-Notes

1 SAHI使用

import sahi # 打印sahi版本 print(sahi.__version__) 
0.11.6 

1.1 图像切片

SAHI提供了封装好的函数接口,以切分输入图像和其标注数据。切分后的子图及其标注数据可以用于识别,或者保存为本地数据以供模型训练。

1.1.1 单张图像切片

SAHI提供slice_image函数以切分单张图片及其标注文件(仅支持coco标注文件),slice_image函数接口介绍如下:

# 返回SAHI的图像分片结果类SliceImageResult def slice_image(     image: Union[str, Image.Image], # 单张图像地址或单个pillow image对象,必填参数     coco_annotation_list: Optional[CocoAnnotation] = None, # coco标注文件     output_file_name: Optional[str] = None, # 输出文件名前缀     output_dir: Optional[str] = None, # 输出文件地址     slice_height: int = None, # 子图切分高度     slice_width: int = None, # 子图切分宽度     overlap_height_ratio: float = None, # 子图高度间的重叠率     overlap_width_ratio: float = None, # 子图宽度间的重叠率     auto_slice_resolution: bool = True, # 如果没有设置slice_height和slice_width,则自动确定slice_height、slice_width、overlap_height_ratio、overlap_width_ratio     min_area_ratio: float = 0.1, # 子图中标注框小于原始标注框占比,则放弃该标注框     out_ext: Optional[str] = None, # 图像后缀格式     verbose: bool = False, # 是否打印详细信息 )  

slice_image函数源代码位于sahi/slicing.py中,这段代码可以单步调试看看怎么运行的,主要逻辑如下:

  1. 获得pillow image图像对象

  2. 调用get_slice_bboxes函数切分图像

    • 获得切分参数
    if slice_height and slice_width:     # 计算重叠像素     y_overlap = int(overlap_height_ratio * slice_height)     x_overlap = int(overlap_width_ratio * slice_width) elif auto_slice_resolution:     x_overlap, y_overlap, slice_width, slice_height = get_auto_slice_params(height=image_height, width=image_width) 
    • 循环切分图像
    # 行循环 while y_max < image_height:     # 设置起始切分坐标     x_min = x_max = 0     y_max = y_min + slice_height     # 列循环     while x_max < image_width:         x_max = x_min + slice_width         # 如果图像不够切分,框往左或往上移动         if y_max > image_height or x_max > image_width:             xmax = min(image_width, x_max)             ymax = min(image_height, y_max)             xmin = max(0, xmax - slice_width)             ymin = max(0, ymax - slice_height)             slice_bboxes.append([xmin, ymin, xmax, ymax])         else:             slice_bboxes.append([x_min, y_min, x_max, y_max])         # 下一次切分从本次切分图像x_max-x_overlap开始         x_min = x_max - x_overlap     y_min = y_max - y_overlap 
  3. 保存图片结果和标注结果,并包装返回SliceImageResult对象

以下代码演示了对单张图片进行切片,并将切分后的子图保存到本地。

展示原图

# 展示输入图片 from PIL import Image # 图像地址:https://github.com/obss/sahi/tree/main/demo/demo_data image_path = "image/small-vehicles1.jpeg" img = Image.open(image_path).convert('RGB') img 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

切分图片

from sahi.slicing import slice_image  # 输出文件名前缀 output_file_name = "slice" # 输出文件夹 output_dir = "result"  # 切分图像 slice_image_result = slice_image(     image=image_path,     output_file_name=output_file_name,     output_dir=output_dir,     slice_height=256,     slice_width=256,     overlap_height_ratio=0.2,     overlap_width_ratio=0.2,     verbose=False, ) print("原图宽{},高{}".format(slice_image_result.original_image_width, slice_image_result.original_image_height)) # 切分后的子图以形式:图像前缀_所在原图顶点坐标来保存文件 print("切分子图{}张".format(len(slice_image_result.filenames)))  
原图宽1068,高580 切分子图15张 

展示切分后的子图

import matplotlib.pyplot as plt from PIL import Image import math import os  axarr_row = 3 axarr_col = math.ceil(len(slice_image_result.filenames)/axarr_row) f, axarr = plt.subplots(axarr_row, axarr_col, figsize=(14,7)) for index, file in enumerate(slice_image_result.filenames):     img = Image.open(os.path.join(slice_image_result.image_dir,file))     axarr[int(index/axarr_col), int(index%axarr_col)].imshow(img) 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

1.1.2 COCO数据集切片

SAHI提供slice_coco函数以切分coco数据集(仅支持coco数据集)。slice_coco函数接口介绍如下:

# 返回切片后的coco标注字典文件,coco文件保存地址 def slice_coco(     coco_annotation_file_path: str, # coco标注文件     image_dir: str, # coco图像集地址     output_coco_annotation_file_name: str, # 输出coco标注集文件名,不需要加文件类型后缀     output_dir: Optional[str] = None, # 输出文件地址     ignore_negative_samples: bool = False, # 是否忽略没有标注框的子图     slice_height: int = 512, # 切分子图高度     slice_width: int = 512, # 切分子图宽度     overlap_height_ratio: float = 0.2, # 子图高度之间的重叠率     overlap_width_ratio: float = 0.2, # 子图宽度之间的重叠率     min_area_ratio: float = 0.1, # 如果没有设置slice_height和slice_width,则自动确定slice_height、slice_width、overlap_height_ratio、overlap_width_ratio     out_ext: Optional[str] = None,  # 保存图像的扩展     verbose: bool = False, # 是否打印详细信息 ) 

slice_coco函数源代码位于sahi/slicing.py中,这段代码可以单步调试看看怎么做的,主要逻辑如下:

  1. 读取coco文件和图片信息
  2. 循环读取coco数据集的图片,每张图片调用get_slice_bboxes函数切分图像
  3. 创建coco dict结果并保存文件

以下代码演示了对coco数据集进行切片,并将切分后的子图和标注文件保存到本地。coco数据集可以包含若干张图片,但是以下代码示例中只包含一张图片,方便演示。

展示数据集

# 展示图像 from PIL import Image, ImageDraw from sahi.utils.file import load_json import matplotlib.pyplot as plt import os  # coco图像集地址 image_path = "image" # coco标注文件 coco_annotation_file_path="image/terrain2_coco.json" # 加载数据集 coco_dict = load_json(coco_annotation_file_path)  f, axarr = plt.subplots(1, 1, figsize=(8, 8)) # 读取图像 img_ind = 0 img = Image.open(os.path.join(image_path,coco_dict["images"][img_ind]["file_name"])).convert('RGBA') # 绘制标注框 for ann_ind in range(len(coco_dict["annotations"])):     xywh = coco_dict["annotations"][ann_ind]["bbox"]     xyxy = [xywh[0], xywh[1], xywh[0] + xywh[2], xywh[1] + xywh[3]]     ImageDraw.Draw(img, 'RGBA').rectangle(xyxy, width=5) axarr.imshow(img) 
<matplotlib.image.AxesImage at 0x210a7583250> 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

切分数据集

from sahi.slicing import slice_coco  # 保存的coco数据集标注文件名 output_coco_annotation_file_name="sliced" # 输出文件夹 output_dir = "result"  # 切分数据集 coco_dict, coco_path = slice_coco(     coco_annotation_file_path=coco_annotation_file_path,     image_dir=image_path,     output_coco_annotation_file_name=output_coco_annotation_file_name,     ignore_negative_samples=False,     output_dir=output_dir,     slice_height=320,     slice_width=320,     overlap_height_ratio=0.2,     overlap_width_ratio=0.2,     min_area_ratio=0.2,     verbose=False )  print("切分子图{}张".format(len(coco_dict['images']))) print("获得标注框{}个".format(len(coco_dict['annotations']))) 
indexing coco dataset annotations...   Loading coco annotations: 100%|█████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 334.21it/s] 100%|████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 11.80it/s]  切分子图12张 获得标注框18个 

展示切分后的子图和标注框

axarr_row = 3 axarr_col = math.ceil(len(coco_dict['images']) / axarr_row) f, axarr = plt.subplots(axarr_row, axarr_col, figsize=(10, 7)) for index, img in enumerate(coco_dict['images']):     img = Image.open(os.path.join(output_dir, img["file_name"]))     for ann_ind in range(len(coco_dict["annotations"])):         # 搜索与当前图像匹配的边界框         if coco_dict["annotations"][ann_ind]["image_id"] == coco_dict["images"][index]["id"]:             xywh = coco_dict["annotations"][ann_ind]["bbox"]             xyxy = [xywh[0], xywh[1], xywh[0] + xywh[2], xywh[1] + xywh[3]]             # 绘图             ImageDraw.Draw(img, 'RGBA').rectangle(xyxy, width=5)     axarr[int(index / axarr_col), int(index % axarr_col)].imshow(img) 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

1.2 图像预测

1.2.1 接口介绍

SHAI提供了图像切片预测的封装接口,具体的函数接口如下:

AutoDetectionModel类

SAHI基于AutoDetectionModel类的from_pretrained函数加载深度学习模型。目前支持YOLOv5 models, MMDetection models, Detectron2 models和HuggingFace object detection models等深度学习模型库,如果想支持新的模型库,可以参考sahi/models目录下的模型文件,新建模型检测类。

模型预测

  • 基于get_prediction函数调用模型预测单张图片,也就是直接调用AutoDetectionModel类提供的模型,直接推理单张图片。

  • 基于get_sliced_prediction函数以切分图片的方式进行预测。在get_sliced_prediction函数内部会先切分图片,然后对每个子图单独进行模型推理;如果设置了对整张原图进行推理,那么也会整合原图推理的结果以增加模型精度。最后对所有的预测结果进行nms整合,相近的两个预测框也会进行合并。get_sliced_prediction函数接口如下:

def get_sliced_prediction(     image,     detection_model=None,     slice_height: int = None,     slice_width: int = None,     overlap_height_ratio: float = 0.2,     overlap_width_ratio: float = 0.2,     perform_standard_pred: bool = True, # 是否单独对原图进行识别     postprocess_type: str = "GREEDYNMM", # 合并结果的方式,可选'NMM', 'GRREDYNMM', 'NMS'     postprocess_match_metric: str = "IOS", # NMS匹配方式IOU或者IOS     postprocess_match_threshold: float = 0.5, # 匹配置信度     postprocess_class_agnostic: bool = False, # 在合并结果时,是否将不同类别的检测框放在一起处理     verbose: int = 1,      merge_buffer_length: int = None, # 低配设备使用,以加快处理     auto_slice_resolution: bool = True, ) 
  • 基于predict函数进行批处理,predict函数进一步封装了识别代码,如果想使用该函数,阅读predict源代码参数接口即可。

1.2.2 应用实例

直接预测图片

from sahi import AutoDetectionModel from sahi.predict import get_prediction  # 初始化检测模型,缺少yolov5代码,pip install yolov5即可 detection_model = AutoDetectionModel.from_pretrained(     model_type='yolov5', # 模型类型     model_path='./yolov5n.pt', # 模型文件路径     confidence_threshold=0.3, # 检测阈值     device="cpu",  # or 'cuda:0' ); image = 'image/small-vehicles1.jpeg'  # 获得模型直接预测结果 result = get_prediction(image, detection_model)  # result是SAHI的PredictionResult对象,可获得推理时间,检测图像,检测图像尺寸,检测结果 # 查看标注框,可以用于保存为其他格式 for pred in result.object_prediction_list:     bbox = pred.bbox  # 标注框BoundingBox对象,可以获得边界框的坐标、面积     category = pred.category  # 类别Category对象,可获得类别id和类别名     score = pred.score.value  # 预测置信度  # 保存文件结果 export_dir = "result" file_name = "res" result.export_visuals(export_dir=export_dir, file_name=file_name)  # 展示结果 from PIL import Image import os image_path = os.path.join(export_dir,file_name+'.png') img = Image.open(image_path).convert('RGB') img 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

切片预测图片

from sahi import AutoDetectionModel from sahi.predict import get_sliced_prediction  # 初始化检测模型 detection_model = AutoDetectionModel.from_pretrained(     model_type='yolov5',     model_path='yolov5n.pt',     confidence_threshold=0.3,     device="cpu",  # or 'cuda:0' ) image = 'image/small-vehicles1.jpeg'   result = get_sliced_prediction(     image,     detection_model,     slice_height = 256,     slice_width = 256,     overlap_height_ratio = 0.2,     overlap_width_ratio = 0.2,     perform_standard_pred = True, )  # result是SAHI的PredictionResult对象,可获得推理时间,检测图像,检测图像尺寸,检测结果 # 查看标注框,可以用于保存为其他格式 for pred in result.object_prediction_list:     bbox = pred.bbox  # 标注框BoundingBox对象,可以获得边界框的坐标、面积     category = pred.category  # 类别Category对象,可获得类别id和类别名     score = pred.score.value  # 预测置信度  # 保存文件结果 export_dir = "result" file_name = "res" result.export_visuals(export_dir=export_dir, file_name=file_name) # 结果导出为coco标注形式 coco_anno = result.to_coco_annotations() # 结果导出为coco预测形式 coco_pred = result.to_coco_predictions()  # 展示结果 from PIL import Image import os image_path = os.path.join(export_dir,file_name+'.png') img = Image.open(image_path).convert('RGB') img  
Performing prediction on 15 number of slices. 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

相对单张图片直接识别,通过切片的方式能够识别到更多的小目标。由于使用的模型是yolov5n,可以看到一些识别结果不正确,比如同一辆车在不同子图被分别识别为卡车或汽车,一种好的解决办法是将postprocess_class_agnostic参数设置为True,将不同类别的检测框放在一起进行合并,同时降低 postprocess_match_threshold以滤除结果。

image = 'image/small-vehicles1.jpeg'   result = get_sliced_prediction(     image,     detection_model,     slice_height = 256,     slice_width = 256,     overlap_height_ratio = 0.2,     overlap_width_ratio = 0.2,     perform_standard_pred = True,     postprocess_match_threshold = 0.2,     postprocess_class_agnostic = True, )   # 保存文件结果 export_dir = "result" file_name = "res" result.export_visuals(export_dir=export_dir, file_name=file_name)  # 展示结果 from PIL import Image import os image_path = os.path.join(export_dir,file_name+'.png') img = Image.open(image_path).convert('RGB') img 
Performing prediction on 15 number of slices. 

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

1.3 SAHI工具函数

SAHI提供多个工具函数以处理COCO数据集,具体使用可以阅读sahi-docs-coco

1.3.1 coco数据集制作与精度分析

以下代码创建了coco标注数据,并保存到本地

from sahi.utils.file import save_json from sahi.utils.coco import Coco, CocoCategory, CocoImage, CocoAnnotation,CocoPrediction   # 创建coco对象 coco = Coco()  # 添加类 coco.add_category(CocoCategory(id=0, name='human')) coco.add_category(CocoCategory(id=1, name='vehicle'))  # 循环遍历图像 for i in range(3):     # 创建单个图像     coco_image = CocoImage(         file_name="image{}.jpg".format(i), height=1080, width=1920)      # 添加图像对应的标注     coco_image.add_annotation(         CocoAnnotation(             # [x_min, y_min, width, height]             bbox=[0, 0, 200, 200],             category_id=0,             category_name='human'         )     )     coco_image.add_annotation(         CocoAnnotation(             bbox=[200, 100, 300, 300],             category_id=1,             category_name='vehicle'         )     )          # 添加图像预测数据     coco_image.add_prediction(       CocoPrediction(         score=0.864434,         bbox=[0, 0, 150, 150],         category_id=0,         category_name='human'       )     )     coco_image.add_prediction(       CocoPrediction(         score=0.653424,         bbox=[200, 100, 250, 200],         category_id=1,         category_name='vehicle'       ) )     # 将图像添加到coco对象     coco.add_image(coco_image)  # 提取json标注数据,不会保存图像预测结果 coco_json = coco.json  # 将json标注数据保存为json本地文件 save_json(coco_json, "coco_dataset.json")  # 提取预测结果json文件,并保存到本地 predictions_array = coco.prediction_array save_json(predictions_array, "coco_predictions.json") 

当我们获得了预测数据,我们可以基于pycocotools工具分析预测数据的精度,pycocotools是目标检测必备工具,官方仓库地址为cocoapi,结果分析代码如下:

# 需要单独安装pycocotools from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO  coco_ground_truth = COCO(annotation_file="coco_dataset.json") coco_predictions = coco_ground_truth.loadRes("coco_predictions.json")  coco_evaluator = COCOeval(coco_ground_truth, coco_predictions, "bbox") # 进行匹配计算 coco_evaluator.evaluate() # 进行结果的累加 coco_evaluator.accumulate() # 输出结果 coco_evaluator.summarize() 
loading annotations into memory... Done (t=0.00s) creating index... index created! Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s).  Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.200  Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 1.000  Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.000  Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000  Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000  Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.200  Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.200  Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.200  Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.200  Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000  Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000  Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.200 

统计数据集标注信息

from sahi.utils.coco import Coco  coco = Coco.from_coco_dict_or_path("coco_dataset.json")  # 获得数据集状态,指标说明看字段名就能懂 stats = coco.stats stats 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1504.59it/s]      {'num_images': 3,  'num_annotations': 6,  'num_categories': 2,  'num_negative_images': 0,  'num_images_per_category': {'human': 3, 'vehicle': 3},  'num_annotations_per_category': {'human': 3, 'vehicle': 3},  'min_num_annotations_in_image': 2,  'max_num_annotations_in_image': 2,  'avg_num_annotations_in_image': 2.0,  'min_annotation_area': 40000,  'max_annotation_area': 90000,  'avg_annotation_area': 65000.0,  'min_annotation_area_per_category': {'human': 40000, 'vehicle': 90000},  'max_annotation_area_per_category': {'human': 40000, 'vehicle': 90000}} 

预测结果过滤

from sahi.utils.file import save_json from sahi.utils.coco import remove_invalid_coco_results  # 去除预测结果中的无效边界框,如边界框坐标为负的结果 coco_results = remove_invalid_coco_results("coco_predictions.json")  save_json(coco_results, "fixed_coco_result.json")  # 根据数据集实际标注信息,进一步去除边界框坐标超过图像长宽的结果 coco_results = remove_invalid_coco_results("coco_predictions.json", "coco_dataset.json") 

1.3.2 coco数据集处理

切分数据集

from sahi.utils.coco import Coco  # 指定coco文件 coco_path = "coco_dataset.json"  # 初始coco对象 coco = Coco.from_coco_dict_or_path(coco_path)  # 拆分数据集为训练集和验证集,训练集图像占比0.85 result = coco.split_coco_as_train_val(   train_split_rate=0.85 )  # 保存训练集和验证集 save_json(result["train_coco"].json, "train_split.json") save_json(result["val_coco"].json, "val_split.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 3005.95it/s] 

修改标注类别

from sahi.utils.coco import Coco from sahi.utils.file import save_json   coco = Coco.from_coco_dict_or_path("coco_dataset.json") print("标注类别:{}".format(coco.category_mapping))  # 修改数据集类别 # 将标注中human类的索引改为3,将原先vehicle类的标注删除 # 新加big_vehicle类和car类 desired_name2id = {   "big_vehicle": 1,   "car": 2,   "human": 3 } # 更新标注类别 coco.update_categories(desired_name2id)  print("修改后标注类别:{}".format(coco.category_mapping))  # 保存结果 save_json(coco.json, "updated_coco.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1002.78it/s]  标注类别:{0: 'human', 1: 'vehicle'} 修改后标注类别:{1: 'big_vehicle', 2: 'car', 3: 'human'} 

按照标注框面积过滤数据集

from sahi.utils.coco import Coco from sahi.utils.file import save_json  # 打开标注数据 coco = Coco.from_coco_dict_or_path("coco_dataset.json")  # 过滤包含标注框面积小于min的图像 area_filtered_coco = coco.get_area_filtered_coco(min=50000) # 过滤标注框面积不在[min,max]的图像 area_filtered_coco = coco.get_area_filtered_coco(min=50, max=80000) # 筛选同时符合多个类别面积要求的图像 intervals_per_category = {   "human": {"min": 20, "max": 30000},   "vehicle": {"min": 50, "max": 90000}, } area_filtered_coco = coco.get_area_filtered_coco(intervals_per_category=intervals_per_category)  # 导出数据 save_json(area_filtered_coco.json, "area_filtered_coco.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1503.69it/s] 

过滤无标注的图片

from sahi.utils.coco import Coco from sahi.utils.file import save_json # 去除无标注框的图片 coco = Coco.from_coco_dict_or_path("coco_dataset.json", ignore_negative_samples=True) # 导出数据 # save_json(coco.json, "coco_ignore_negative.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 3007.39it/s] 

裁剪标注框

from sahi.utils.coco import Coco from sahi.utils.file import save_json   coco_path = "coco_dataset.json"  # 将溢出边界框剪裁为图像宽度和高度 coco = Coco.from_coco_dict_or_path(coco_path, clip_bboxes_to_img_dims=True)  # 对已有coco对象,将溢出边界框剪裁为图像宽度和高度 coco = coco.get_coco_with_clipped_bboxes()  save_json(coco.json, "coco.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1007.04it/s] 

合并coco数据集

# from sahi.utils.coco import Coco # from sahi.utils.file import save_json  # coco_1 = Coco.from_coco_dict_or_path("coco1.json", image_dir="images_1/") # coco_2 = Coco.from_coco_dict_or_path("coco2.json", image_dir="images_2/")  # # 合并数据集 # coco_1.merge(coco_2)  # # 保存 # save_json(coco_1.json, "merged_coco.json") 

下采样数据集

from sahi.utils.coco import Coco from sahi.utils.file import save_json coco_path = "coco_dataset.json"  coco = Coco.from_coco_dict_or_path(coco_path)  # 用1/10的图像创建Coco对象 # subsample_ratio表示每10张图像取1张图像 subsampled_coco = coco.get_subsampled_coco(subsample_ratio=10)  # 仅对包含标注框为category_id的图像进行下采样,category_i=-1时表示负样本 subsampled_coco = coco.get_subsampled_coco(subsample_ratio=10, category_id=0)  # 保存数据集 save_json(subsampled_coco.json, "subsampled_coco.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1512.19it/s] 

上采样数据集

from sahi.utils.coco import Coco from sahi.utils.file import save_json coco_path = "coco_dataset.json"  coco = Coco.from_coco_dict_or_path(coco_path)  # 每个样本重复10次 upsampled_coco = coco.get_upsampled_coco(upsample_ratio=10)   # 仅对包含标注框为category_id的图像进行采样,category_i=-1时表示负样本 subsampled_coco = coco.get_upsampled_coco(upsample_ratio=10, category_id=0)   # 导出数据集 save_json(upsampled_coco.json, "upsampled_coco.json") 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1503.51it/s] 

1.3.3 coco数据集转换

导出为yolov5格式并分割数据集

from sahi.utils.coco import Coco  # 注意image_dir路径 coco = Coco.from_coco_dict_or_path("coco_dataset.json", image_dir="images/")  # 导出为yolov5数据集格式,train_split_rate设置训练集数据比例 # coco.export_as_yolov5( #   output_dir="output/", #   train_split_rate=0.85 # ) 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1002.22it/s] 

将训练集和验证集导出为yolov5格式

from sahi.utils.coco import Coco, export_coco_as_yolov5  # 注意image_dir路径 train_coco = Coco.from_coco_dict_or_path("train_split.json", image_dir="images/") val_coco = Coco.from_coco_dict_or_path("val_split.json", image_dir="images/")  # 导出数据集 # data_yml_path = export_coco_as_yolov5( #   output_dir="output", #   train_coco=train_coco, #   val_coco=val_coco # ) 
indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1002.34it/s]   indexing coco dataset annotations...   Loading coco annotations: 100%|████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1003.42it/s] 

1.4 总结

目标检测过程中,通过对高分辨率小目标图像进行滑动窗口切片,能够有效提高大分辨率小目标图像的识别精度。但是滑动切片识别有需要注意的地方:

  • 需要图像数据集是否符合通用的高分辨小目标图像标准,如果对普通数据集进行切片识别容易拆分已有目标物体,这样做浪费推理时间也会导致最终检测结果精度不高。
  • 滑动切片对识别模型的精度有一定的要求,一般来说模型越大精度越高,但是切片识别所花费的推理时间也越长。所以需要平衡模型精度和模型推理时间,而且也要确定滑动切片的尺度。
  • 滑动切片识别在识别目标类别较少的任务中,识别精度更高,因为后处理能过滤很多重复识别检测框。

如果想了解其他的小目标识别方案,可以看看paddle家的paddledetection-smalldet。paddle提供了基于原图和基于切图的小目标识别方案,也提供了统计数据集尺寸分布的代码(该统计代码对某些特定的数据集效果不好,具体原因看看代码)。推荐看看PaddleDetection的小目标识别方案,做的很不错。

2 参考

发表评论

相关文章