前言
经过前面两个实验的铺垫,终于到了给数据库系统添加执行查询计划功能的时候了。给定一条 SQL 语句,我们可以将其中的操作符组织为一棵树,树中的每一个父节点都能从子节点获取 tuple 并处理成操作符想要的样子,下图的根节点 (pi) 会输出最终的查询结果。
对于这样一棵树,我们获取查询结果的方式有许多种,包括:迭代模型、物化模型和向量化模型。本次实验使用的是迭代模型,每个节点都会实现一个 Next()
函数,用于向父节点提供一个 tuple。从根节点开始,每个父节点每次向子节点索取一个 tuple 并处理之后输出:
代码实现
实验主要有三个任务:目录表、执行器和用线性探测哈希表重新实现 hash join 执行器,下面会一个个介绍这几个任务的完成过程。
目录表
目录表可以根据 table_oid
或者 table_name
返回表的元数据,其中最重要的一个字段就是 table_
,该字段表示一张表,用于查询、插入、修改和删除 tuple:
using table_oid_t = uint32_t; using column_oid_t = uint32_t; struct TableMetadata { TableMetadata(Schema schema, std::string name, std::unique_ptr<TableHeap> &&table, table_oid_t oid) : schema_(std::move(schema)), name_(std::move(name)), table_(std::move(table)), oid_(oid) {} Schema schema_; std::string name_; std::unique_ptr<TableHeap> table_; table_oid_t oid_; };
目录表类 SimpleCatalog
中有三个要求我们实现的方法:CreateTable
、GetTable(const std::string &table_name)
和 GetTable(table_oid_t table_oid)
,第一个方法用于创建一个新的表,后面两个方法用于获取表:
class SimpleCatalog { public: SimpleCatalog(BufferPoolManager *bpm, LockManager *lock_manager, LogManager *log_manager) : bpm_{bpm}, lock_manager_{lock_manager}, log_manager_{log_manager} {} /** * Create a new table and return its metadata. * @param txn the transaction in which the table is being created * @param table_name the name of the new table * @param schema the schema of the new table * @return a pointer to the metadata of the new table */ TableMetadata *CreateTable(Transaction *txn, const std::string &table_name, const Schema &schema) { BUSTUB_ASSERT(names_.count(table_name) == 0, "Table names should be unique!"); table_oid_t oid = next_table_oid_++; auto table = std::make_unique<TableHeap>(bpm_, lock_manager_, log_manager_, txn); tables_[oid] = std::make_unique<TableMetadata>(schema, table_name, std::move(table), oid); names_[table_name] = oid; return tables_[oid].get(); } /** @return table metadata by name */ TableMetadata *GetTable(const std::string &table_name) { auto it = names_.find(table_name); if (it == names_.end()) { throw std::out_of_range("The table name doesn't exist."); } return GetTable(it->second); } /** @return table metadata by oid */ TableMetadata *GetTable(table_oid_t table_oid) { auto it = tables_.find(table_oid); if (it == tables_.end()) { throw std::out_of_range("The table oid doesn't exist."); } return it->second.get(); } private: [[maybe_unused]] BufferPoolManager *bpm_; [[maybe_unused]] LockManager *lock_manager_; [[maybe_unused]] LogManager *log_manager_; /** tables_ : table identifiers -> table metadata. Note that tables_ owns all table metadata. */ std::unordered_map<table_oid_t, std::unique_ptr<TableMetadata>> tables_; /** names_ : table names -> table identifiers */ std::unordered_map<std::string, table_oid_t> names_; /** The next table identifier to be used. */ std::atomic<table_oid_t> next_table_oid_{0}; };
测试结果如下:
执行器
执行器用于执行查询计划,该实验要求我们实现下述四种执行器:
SeqScanExecutor
:顺序扫描执行器,遍历表并返回符合查询条件的 tuple,比如SELECT * FROM user where id=1
通过该执行器获取查询结果InsertExecutor
:插入执行器,向表格中插入任意数量的 tuple,比如INSERT INTO user VALUES (1, 2), (2, 3)
HashJoinExecutor
:哈希连接执行器,用于内连接查询操作,比如SELECT u.id, c.class FROM u JOIN c ON u.id = c.uid
AggregationExecutor
:聚合执行器,用于执行聚合操作,比如SELECT MIN(grade), MAX(grade) from user
每个执行器都继承自抽象类 AbstractExecutor
,有两个纯虚函数 Init()
和 Next(Tuple *tuple)
需要实现,其中 Init()
用于初始化执行器,比如需要在 HashJoinExecutor
的 Init()
中对 left table(outer table) 创建哈希表。AbstractExecutor
还有一个 ExecutorContext
成员,包含一些查询的元数据,比如 BufferPoolManager
和上个任务实现的 SimpleCatalog
:
class AbstractExecutor { public: /** * Constructs a new AbstractExecutor. * @param exec_ctx the executor context that the executor runs with */ explicit AbstractExecutor(ExecutorContext *exec_ctx) : exec_ctx_{exec_ctx} {} /** Virtual destructor. */ virtual ~AbstractExecutor() = default; /** * Initializes this executor. * @warning This function must be called before Next() is called! */ virtual void Init() = 0; /** * Produces the next tuple from this executor. * @param[out] tuple the next tuple produced by this executor * @return true if a tuple was produced, false if there are no more tuples */ virtual bool Next(Tuple *tuple) = 0; /** @return the schema of the tuples that this executor produces */ virtual const Schema *GetOutputSchema() = 0; /** @return the executor context in which this executor runs */ ExecutorContext *GetExecutorContext() { return exec_ctx_; } protected: ExecutorContext *exec_ctx_; };
执行器内部会有一个代表执行计划的 AbstractPlanNode
的子类数据成员,而这些子类内部又会有一个 AbstractExpression
的子类数据成员用于判断查询条件是否成立等操作。
顺序扫描
提供的代码中为我们实现了一个 TableIterator
类,用于迭代 TableHeap
,我们只要在 Next
函数中判断迭代器所指的 tuple 是否满足查询条件并递增迭代器,如果满足条件就返回该 tuple,不满足就接着迭代:
class SeqScanExecutor : public AbstractExecutor { public: /** * Creates a new sequential scan executor. * @param exec_ctx the executor context * @param plan the sequential scan plan to be executed */ SeqScanExecutor(ExecutorContext *exec_ctx, const SeqScanPlanNode *plan); void Init() override; bool Next(Tuple *tuple) override; const Schema *GetOutputSchema() override { return plan_->OutputSchema(); } private: /** The sequential scan plan node to be executed. */ const SeqScanPlanNode *plan_; TableMetadata *table_metadata_; TableIterator table_iterator_; };
实现代码如下:
SeqScanExecutor::SeqScanExecutor(ExecutorContext *exec_ctx, const SeqScanPlanNode *plan) : AbstractExecutor(exec_ctx), plan_(plan), table_metadata_(exec_ctx->GetCatalog()->GetTable(plan->GetTableOid())), table_iterator_(table_metadata_->table_->Begin(exec_ctx->GetTransaction())) {} void SeqScanExecutor::Init() {} bool SeqScanExecutor::Next(Tuple *tuple) { auto predicate = plan_->GetPredicate(); while (table_iterator_ != table_metadata_->table_->End()) { *tuple = *table_iterator_++; if (!predicate || predicate->Evaluate(tuple, &table_metadata_->schema_).GetAs<bool>()) { return true; } } return false; }
插入
插入操作分为两种:
- raw inserts:插入数据直接来自插入执行器本身,比如
INSERT INTO tbl_user VALUES (1, 15), (2, 16)
- not-raw inserts:插入的数据来自子执行器,比如
INSERT INTO tbl_user1 SELECT * FROM tbl_user2
可以根据插入计划的 IsRawInsert()
判断插入操作的类型,这个函数根据子查询器列表是否为空进行判断:
/** @return true if we embed insert values directly into the plan, false if we have a child plan providing tuples */ bool IsRawInsert() const { return GetChildren().empty(); }
如果是 raw inserts,我们直接根据插入执行器中的数据构造 tuple 并插入表中,否则调用子执行器的 Next
函数获取数据并插入表中:
class InsertExecutor : public AbstractExecutor { public: /** * Creates a new insert executor. * @param exec_ctx the executor context * @param plan the insert plan to be executed * @param child_executor the child executor to obtain insert values from, can be nullptr */ InsertExecutor(ExecutorContext *exec_ctx, const InsertPlanNode *plan, std::unique_ptr<AbstractExecutor> &&child_executor); const Schema *GetOutputSchema() override; void Init() override; // Note that Insert does not make use of the tuple pointer being passed in. // We return false if the insert failed for any reason, and return true if all inserts succeeded. bool Next([[maybe_unused]] Tuple *tuple) override; private: /** The insert plan node to be executed. */ const InsertPlanNode *plan_; std::unique_ptr<AbstractExecutor> child_executor_; TableMetadata *table_metadata_; };
实现代码为:
InsertExecutor::InsertExecutor(ExecutorContext *exec_ctx, const InsertPlanNode *plan, std::unique_ptr<AbstractExecutor> &&child_executor) : AbstractExecutor(exec_ctx), plan_(plan), child_executor_(std::move(child_executor)), table_metadata_(exec_ctx->GetCatalog()->GetTable(plan->TableOid())) {} const Schema *InsertExecutor::GetOutputSchema() { return plan_->OutputSchema(); } void InsertExecutor::Init() {} bool InsertExecutor::Next([[maybe_unused]] Tuple *tuple) { RID rid; if (plan_->IsRawInsert()) { for (const auto &values : plan_->RawValues()) { Tuple tuple(values, &table_metadata_->schema_); if (!table_metadata_->table_->InsertTuple(tuple, &rid, exec_ctx_->GetTransaction())) { return false; }; } } else { Tuple tuple; while (child_executor_->Next(&tuple)) { if (!table_metadata_->table_->InsertTuple(tuple, &rid, exec_ctx_->GetTransaction())) { return false; }; } } return true; }
哈希连接
哈希连接执行器使用的是最基本的哈希连接算法,没有使用布隆过滤器等优化措施。该算法分为两个阶段:
- 将 left table 的 join 语句中各个条件所在列的值作为键,tuple 或者 row id 作为值构造哈希表,这一步允许将相同哈希值的 tuple 插入哈希表
- 对 right table 的 join 语句中各个条件所在列的值作为键,在哈希表中进行查询获取所以系统哈希值的 left table 中的 tuple,再使用 join 条件进行精确匹配
对 tuple 进行哈希的函数为:
/** * Hashes a tuple by evaluating it against every expression on the given schema, combining all non-null hashes. * @param tuple tuple to be hashed * @param schema schema to evaluate the tuple on * @param exprs expressions to evaluate the tuple with * @return the hashed tuple */ hash_t HashJoinExecutor::HashValues(const Tuple *tuple, const Schema *schema, const std::vector<const AbstractExpression *> &exprs) { hash_t curr_hash = 0; // For every expression, for (const auto &expr : exprs) { // We evaluate the tuple on the expression and schema. Value val = expr->Evaluate(tuple, schema); // If this produces a value, if (!val.IsNull()) { // We combine the hash of that value into our current hash. curr_hash = HashUtil::CombineHashes(curr_hash, HashUtil::HashValue(&val)); } } return curr_hash; }
为了方便我们的测试,实验提供了一个简易的哈希表 SimpleHashJoinHashTable
用于插入 (hash, tuple) 键值对,该哈希表直接整个放入内存中,如果 tuple 很多,内存会放不下这个哈希表,所以任务三会替换为上一个实验中实现的 LinearProbeHashTable
。
using HT = SimpleHashJoinHashTable; class HashJoinExecutor : public AbstractExecutor { public: /** * Creates a new hash join executor. * @param exec_ctx the context that the hash join should be performed in * @param plan the hash join plan node * @param left the left child, used by convention to build the hash table * @param right the right child, used by convention to probe the hash table */ HashJoinExecutor(ExecutorContext *exec_ctx, const HashJoinPlanNode *plan, std::unique_ptr<AbstractExecutor> &&left, std::unique_ptr<AbstractExecutor> &&right); /** @return the JHT in use. Do not modify this function, otherwise you will get a zero. */ const HT *GetJHT() const { return &jht_; } const Schema *GetOutputSchema() override { return plan_->OutputSchema(); } void Init() override; bool Next(Tuple *tuple) override; hash_t HashValues(const Tuple *tuple, const Schema *schema, const std::vector<const AbstractExpression *> &exprs) { // 省略 } private: /** The hash join plan node. */ const HashJoinPlanNode *plan_; std::unique_ptr<AbstractExecutor> left_executor_; std::unique_ptr<AbstractExecutor> right_executor_; /** The comparator is used to compare hashes. */ [[maybe_unused]] HashComparator jht_comp_{}; /** The identity hash function. */ IdentityHashFunction jht_hash_fn_{}; /** The hash table that we are using. */ HT jht_; /** The number of buckets in the hash table. */ static constexpr uint32_t jht_num_buckets_ = 2; };
根据上述的算法过程可以得到实现代码为:
HashJoinExecutor::HashJoinExecutor(ExecutorContext *exec_ctx, const HashJoinPlanNode *plan, std::unique_ptr<AbstractExecutor> &&left, std::unique_ptr<AbstractExecutor> &&right) : AbstractExecutor(exec_ctx), plan_(plan), left_executor_(std::move(left)), right_executor_(std::move(right)), jht_("join hash table", exec_ctx->GetBufferPoolManager(), jht_comp_, jht_num_buckets_, jht_hash_fn_) {} void HashJoinExecutor::Init() { left_executor_->Init(); right_executor_->Init(); // create hash table for left child Tuple tuple; while (left_executor_->Next(&tuple)) { auto h = HashValues(&tuple, left_executor_->GetOutputSchema(), plan_->GetLeftKeys()); jht_.Insert(exec_ctx_->GetTransaction(), h, tuple); } } bool HashJoinExecutor::Next(Tuple *tuple) { auto predicate = plan_->Predicate(); auto left_schema = left_executor_->GetOutputSchema(); auto right_schema = right_executor_->GetOutputSchema(); auto out_schema = GetOutputSchema(); Tuple right_tuple; while (right_executor_->Next(&right_tuple)) { // get all tuples with the same hash values in left child auto h = HashValues(&right_tuple, right_executor_->GetOutputSchema(), plan_->GetRightKeys()); std::vector<Tuple> left_tuples; jht_.GetValue(exec_ctx_->GetTransaction(), h, &left_tuples); // get the exact matching left tuple for (auto &left_tuple : left_tuples) { if (!predicate || predicate->EvaluateJoin(&left_tuple, left_schema, &right_tuple, right_schema).GetAs<bool>()) { // create output tuple std::vector<Value> values; for (uint32_t i = 0; i < out_schema->GetColumnCount(); ++i) { auto expr = out_schema->GetColumn(i).GetExpr(); values.push_back(expr->EvaluateJoin(&left_tuple, left_schema, &right_tuple, right_schema)); } *tuple = Tuple(values, out_schema); return true; } } } return false; }
聚合
聚合执行器内部维护了一个哈希表 SimpleAggregationHashTable
以及哈希表迭代器 aht_iterator_
,将键值对插入哈希表的时候会立刻更新聚合结果,最终的查询结果也从该哈希表获取:
AggregationExecutor::AggregationExecutor(ExecutorContext *exec_ctx, const AggregationPlanNode *plan, std::unique_ptr<AbstractExecutor> &&child) : AbstractExecutor(exec_ctx), plan_(plan), child_(std::move(child)), aht_(plan->GetAggregates(), plan->GetAggregateTypes()), aht_iterator_(aht_.Begin()) {} const AbstractExecutor *AggregationExecutor::GetChildExecutor() const { return child_.get(); } const Schema *AggregationExecutor::GetOutputSchema() { return plan_->OutputSchema(); } void AggregationExecutor::Init() { child_->Init(); // initialize aggregation hash table Tuple tuple; while (child_->Next(&tuple)) { aht_.InsertCombine(MakeKey(&tuple), MakeVal(&tuple)); } aht_iterator_ = aht_.Begin(); } bool AggregationExecutor::Next(Tuple *tuple) { auto having = plan_->GetHaving(); auto out_schema = GetOutputSchema(); while (aht_iterator_ != aht_.End()) { auto group_bys = aht_iterator_.Key().group_bys_; auto aggregates = aht_iterator_.Val().aggregates_; if (!having || having->EvaluateAggregate(group_bys, aggregates).GetAs<bool>()) { std::vector<Value> values; for (uint32_t i = 0; i < out_schema->GetColumnCount(); ++i) { auto expr = out_schema->GetColumn(i).GetExpr(); values.push_back(expr->EvaluateAggregate(group_bys, aggregates)); } *tuple = Tuple(values, out_schema); ++aht_iterator_; return true; } ++aht_iterator_; } return false; }
测试
测试结果如下图所示,成功通过所有测试用例:
线性探测哈希表
这个任务要求将哈希连接中的 SimpleHashJoinHashTable
更换成 LinearProbeHashTable
,这样就能在磁盘中保存 left table 的哈希表。实验还提示我们可以实现 TmpTuplePage
,用于保存 left table 的 tuple,其实我们完全可以用代码中写好的 TablePage
来实现该目的,但是 TmpTuplePage
结构更为精简,可以搭配 Tuple::DeserializeFrom
食用,通过实现 TmpTuplePage
,我们也能加深对 tuple 存储方式的理解。
TmpTuplePage
的格式如下所示:
--------------------------------------------------------------------------------------------------------- | PageId (4) | LSN (4) | FreeSpace (4) | (free space) | TupleSize2 | TupleData2 | TupleSize1 | TupleData1 | --------------------------------------------------------------------------------------------------------- -----------------V------------------/ ^ header free space pointer
前 12 个字节是 header,记录了 page id、lsn 和 free space pointer,此处的 free space pointer 是相对 page id 的地址而言的。如果表中一个 tuple 都没有,且表大小为 PAGE_SIZE
,那么 free space pointer 的值就是 PAGE_SIZE
。tuple 从末尾开始插入,每个 tuple 后面跟着 tuple 的大小(占用 4 字节),也就是说插入一个 tuple 占用的空间大小为 tuple.size_ + 4
。
理解上述内容后,实现 TmpTupleHeader
就很简单了,模仿 TablePage
的写法即可(需要将 TmpTuplePage
声明为 Tuple
的友元):
class TmpTuplePage : public Page { public: void Init(page_id_t page_id, uint32_t page_size) { memcpy(GetData(), &page_id, sizeof(page_id)); SetFreeSpacePointer(page_size); } /** @return the page ID of this temp table page */ page_id_t GetTablePageId() { return *reinterpret_cast<page_id_t *>(GetData()); } bool Insert(const Tuple &tuple, TmpTuple *out) { // determine whether there is enough space to insert tuple if (GetFreeSpaceRemaining() < tuple.size_ + SIZE_TUPLE) { return false; } // insert tuple and its size SetFreeSpacePointer(GetFreeSpacePointer() - tuple.size_); memcpy(GetData() + GetFreeSpacePointer(), tuple.data_, tuple.size_); SetFreeSpacePointer(GetFreeSpacePointer() - SIZE_TUPLE); memcpy(GetData() + GetFreeSpacePointer(), &tuple.size_, SIZE_TUPLE); out->SetPageId(GetPageId()); out->SetOffset(GetFreeSpacePointer()); return true; } private: static_assert(sizeof(page_id_t) == 4); static constexpr size_t SIZE_TABLE_PAGE_HEADER = 12; static constexpr size_t SIZE_TUPLE = 4; static constexpr size_t OFFSET_FREE_SPACE = 8; /** @return pointer to the end of the current free space, see header comment */ uint32_t GetFreeSpacePointer() { return *reinterpret_cast<uint32_t *>(GetData() + OFFSET_FREE_SPACE); } /** set the pointer of the end of current free space. * @param free_space_ptr the pointer relative to data_ */ void SetFreeSpacePointer(uint32_t free_space_ptr) { memcpy(GetData() + OFFSET_FREE_SPACE, &free_space_ptr, sizeof(uint32_t)); } /** @return the size of free space */ uint32_t GetFreeSpaceRemaining() { return GetFreeSpacePointer() - SIZE_TABLE_PAGE_HEADER; } };
在 Insert
函数中更新了 TmpTuple
的参数,我们会将 TmpTuple
作为 left table 哈希表的值,而 tuple 放在 TmpTuplePage
中,根据 TmpTuple
中保存的 offset
获取 tuple:
class TmpTuple { public: TmpTuple(page_id_t page_id, size_t offset) : page_id_(page_id), offset_(offset) {} inline bool operator==(const TmpTuple &rhs) const { return page_id_ == rhs.page_id_ && offset_ == rhs.offset_; } page_id_t GetPageId() const { return page_id_; } size_t GetOffset() const { return offset_; } void SetPageId(page_id_t page_id) { page_id_ = page_id; } void SetOffset(size_t offset) { offset_ = offset; } private: page_id_t page_id_; size_t offset_; };
接着需要将哈希表更换为 LinearProbeHashTable
,在 linear_probe_hash_table.cpp
中需要进行模板特例化:
template class LinearProbeHashTable<hash_t, TmpTuple, HashComparator>;
还要对 HashTableBlockPage
进行模板特例化:
template class HashTableBlockPage<hash_t, TmpTuple, HashComparator>;
接着更改 HT
:
using HashJoinKeyType = hash_t; using HashJoinValType = TmpTuple; using HT = LinearProbeHashTable<HashJoinKeyType, HashJoinValType, HashComparator>;
由于 tuple 可能很多,将 jht_num_buckets_
设置为 1000 可以减少调整大小的次数,最后是实现代码:
void HashJoinExecutor::Init() { left_executor_->Init(); right_executor_->Init(); // create temp tuple page auto buffer_pool_manager = exec_ctx_->GetBufferPoolManager(); page_id_t tmp_page_id; auto tmp_page = reinterpret_cast<TmpTuplePage *>(buffer_pool_manager->NewPage(&tmp_page_id)->GetData()); tmp_page->Init(tmp_page_id, PAGE_SIZE); // create hash table for left child Tuple tuple; TmpTuple tmp_tuple(tmp_page_id, 0); while (left_executor_->Next(&tuple)) { auto h = HashValues(&tuple, left_executor_->GetOutputSchema(), plan_->GetLeftKeys()); // insert tuple to page, creata a new temp tuple page if page if full if (!tmp_page->Insert(tuple, &tmp_tuple)) { buffer_pool_manager->UnpinPage(tmp_page_id, true); tmp_page = reinterpret_cast<TmpTuplePage *>(buffer_pool_manager->NewPage(&tmp_page_id)->GetData()); tmp_page->Init(tmp_page_id, PAGE_SIZE); // try inserting tuple to page again tmp_page->Insert(tuple, &tmp_tuple); } jht_.Insert(exec_ctx_->GetTransaction(), h, tmp_tuple); } buffer_pool_manager->UnpinPage(tmp_page_id, true); } bool HashJoinExecutor::Next(Tuple *tuple) { auto buffer_pool_manager = exec_ctx_->GetBufferPoolManager(); auto left_schema = left_executor_->GetOutputSchema(); auto right_schema = right_executor_->GetOutputSchema(); auto predicate = plan_->Predicate(); auto out_schema = GetOutputSchema(); Tuple right_tuple; while (right_executor_->Next(&right_tuple)) { // get all tuples with the same hash values in left child auto h = HashValues(&right_tuple, right_executor_->GetOutputSchema(), plan_->GetRightKeys()); std::vector<TmpTuple> tmp_tuples; jht_.GetValue(exec_ctx_->GetTransaction(), h, &tmp_tuples); // get the exact matching left tuple for (auto &tmp_tuple : tmp_tuples) { // convert tmp tuple to left tuple auto page_id = tmp_tuple.GetPageId(); auto tmp_page = buffer_pool_manager->FetchPage(page_id); Tuple left_tuple; left_tuple.DeserializeFrom(tmp_page->GetData() + tmp_tuple.GetOffset()); buffer_pool_manager->UnpinPage(page_id, false); if (!predicate || predicate->EvaluateJoin(&left_tuple, left_schema, &right_tuple, right_schema).GetAs<bool>()) { // create output tuple std::vector<Value> values; for (uint32_t i = 0; i < out_schema->GetColumnCount(); ++i) { auto expr = out_schema->GetColumn(i).GetExpr(); values.push_back(expr->EvaluateJoin(&left_tuple, left_schema, &right_tuple, right_schema)); } *tuple = Tuple(values, out_schema); return true; } } } return false; }
测试结果如下:
总结
通过这次实验,可以加深对目录、查询计划、迭代模型和 tuple 页布局的理解,算是收获满满的一次实验了,以上~~