Netty源码研究笔记(1)——开篇

1. Netty源码研究笔记(1)——开篇

1.1. Netty介绍

Netty是一个老牌的高性能网络框架。在众多开源框架中都有它的身影,比如:grpc、dubbo、seata等。

里面有着非常多值得学的东西:

  • I/O模型

  • 内存管理

  • 各种网络协议的实现:http、redis、websocket等等

  • 各种各样有趣的技巧的实现:异步、时间轮、池化、内存泄露探测等等。

  • 代码风格、设计思想、设计原则等。

1.2. 源码分析方法

我一般是这样进行源码分析的:

  1. 首先是纵向,通过官方提供的demo,进行debug,并记录在一个完整的生命周期下的调用链上,会涉及到哪些组件。

  2. 然后对涉及到的组件拿出来,找出它们的顶层定义(接口、抽象类)。通过其模块/包的划分类注释定义的方法及其注释,来大致知晓每个组件是做什么的,以及它们在整个框架中的位置是怎样的。

  3. 第二步完成后,就可以对第一步的调用链流程、步骤、涉及到的组件,进行归纳、划分,从而做到心中有数,知道东南西北了。

  4. 之后就是横向,对这些归纳出来的组件体系,逐个进行分析。

  5. 在分析每个组件体系的时候,也是按照先纵向,再横向的步骤:

    1. 首先是纵向:找出该组件体系中的核心顶层接口、类,然后结合其的所有实现类,捋出继承树,然后弄清楚每个类做的是啥,它是怎么定义的,同一层级的不同实现类之间的区别大致是什么,必要的话,可以将这个继承树记下来,在心中推算几遍。

    2. 然后是横向:将各个类有选择性地拿出来分析。

当然,所谓的纵向,横向,这两个过程实际是互相交织的,也就是说整个流程不一定就分为前后两半:前面一半都是纵向,后面一半都是横向。

通过纵向的分析,我们能发现整个框架可以分成大致哪几个部分,以及有

1.3. 分析前的准备

  1. 首先在本地建一个对应的分析学习用的项目,比如:learn_netty,用maven管理依赖
  2. 然后在maven仓库,中找到我们需要的依赖,比如这里我用的是最新的:
<!-- https://mvnrepository.com/artifact/io.netty/netty-all --> <dependency>     <groupId>io.netty</groupId>     <artifactId>netty-all</artifactId>     <version>4.1.77.Final</version> </dependency> 
  1. 将官方提供的demo代码,导入到项目中。
  2. 学习项目搭建好之后,就尝试编译、运行,没问题后,就命令行mvn dependency:sources命令(或者通过IDE)来下载依赖的源代码。
  3. 可选:在github上,将项目同时clone到本地,如果分析中发现问题或者自己有些优化建议,可以尝试为分析的项目贡献代码。

1.4. 分析示例的代码

以一个简单的EchoServer、EchoClient来研究。

public class EchoServer {     private final int port;      public EchoServer(int port) {         this.port = port;     }      public static void main(String[] args) throws Exception {         new EchoServer(8083).start();     }      public void start() throws Exception {         final EchoServerHandler serverHandler = new EchoServerHandler();         EventLoopGroup group = new NioEventLoopGroup();         try {             ServerBootstrap b = new ServerBootstrap();             b.group(group)                     .channel(NioServerSocketChannel.class)                     .localAddress(new InetSocketAddress(port))                     .childHandler(new ChannelInitializer<SocketChannel>() {                         @Override                         public void initChannel(SocketChannel ch) {                             ch.pipeline().addLast(serverHandler);                         }                     });              ChannelFuture f = b.bind().sync();             f.channel().closeFuture().sync();         } finally {             group.shutdownGracefully().sync();         }     } 
public class EchoServerHandler extends ChannelInboundHandlerAdapter {      @Override     public void channelRead(ChannelHandlerContext ctx, Object msg) {         ByteBuf in = (ByteBuf) msg;         System.out.println("Server received: " + in.toString(CharsetUtil.UTF_8));         ctx.write(in);     }      @Override     public void channelReadComplete(ChannelHandlerContext ctx) {         ctx.writeAndFlush(Unpooled.EMPTY_BUFFER)                 .addListener(ChannelFutureListener.CLOSE);     }      @Override     public void exceptionCaught(ChannelHandlerContext ctx,                                 Throwable cause) {         cause.printStackTrace();         ctx.close();     } 
public class EchoClient {     public static void main(String[] args) throws Exception {         connect("127.0.0.1", 8083);     }      public static void connect(String host, int port) throws Exception {         NioEventLoopGroup group = new NioEventLoopGroup();         Bootstrap bootstrap = new Bootstrap();         try {             bootstrap.group(group)                     .channel(NioSocketChannel.class).remoteAddress(new InetSocketAddress(host, port))                     .handler(new ChannelInitializer<SocketChannel>() {                         @Override                         protected void initChannel(SocketChannel ch) {                             ch.pipeline().addLast(new EchoClientHandler());                         }                     });             ChannelFuture f = bootstrap.connect();             f.channel().closeFuture().sync();         } finally {             group.shutdownGracefully();         }     } } 
public class EchoClientHandler extends SimpleChannelInboundHandler<ByteBuf> {     @Override     public void channelRegistered(ChannelHandlerContext ctx) throws Exception {         super.channelRegistered(ctx);     }      @Override     public void channelActive(ChannelHandlerContext ctx) throws Exception {         ctx.writeAndFlush(Unpooled.copiedBuffer("Netty Sockets!", CharsetUtil.UTF_8));     }      @Override     protected void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) throws Exception {         System.out.println(msg.toString(CharsetUtil.UTF_8));     } } 

1.5. 开始分析

分别启动EchoServer、EchoClient,在两个ChannelFuture的位置打断点。

1.5.1. EchoServer启动调用链

进入ServerBootstrapbind方法,发现该方法定义在父类AbstractBootstrap中:

    public ChannelFuture bind() {         validate();         SocketAddress localAddress = this.localAddress;         if (localAddress == null) {             throw new IllegalStateException("localAddress not set");         }         return doBind(localAddress);     } 

接着来看doBind方法,发现也在AbstractBootstrap中:

    private ChannelFuture doBind(final SocketAddress localAddress) {         final ChannelFuture regFuture = initAndRegister();         final Channel channel = regFuture.channel();         if (regFuture.cause() != null) {             return regFuture;         }          if (regFuture.isDone()) {             // At this point we know that the registration was complete and successful.             ChannelPromise promise = channel.newPromise();             doBind0(regFuture, channel, localAddress, promise);             return promise;         } else {             // Registration future is almost always fulfilled already, but just in case it's not.             final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);             regFuture.addListener(new ChannelFutureListener() {                 @Override                 public void operationComplete(ChannelFuture future) throws Exception {                     Throwable cause = future.cause();                     if (cause != null) {                         // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an                         // IllegalStateException once we try to access the EventLoop of the Channel.                         promise.setFailure(cause);                     } else {                         // Registration was successful, so set the correct executor to use.                         // See https://github.com/netty/netty/issues/2586                         promise.registered();                          doBind0(regFuture, channel, localAddress, promise);                     }                 }             });             return promise;         }     } 

发现doBind中主要做了两件事:

  1. initAndRegister(初始化Channel并注册到EventLoop中),这个操作是异步操作,立即返回该操作对应的句柄。

  2. 拿到initAndRegister操作的句柄后,对其进行检查。

    1. 如果initAndRegister已完成那么立即进行doBind0操作(实际的bind操作),并返回doBind0操作对应的句柄。

    2. 如果initAndRegister还没有完成,那么就将doBind0操作异步化:initAndRegister操作完成后再触发doBind0

然后我们先看initAndRegister,它同样在AbstractBootstrap中:

    final ChannelFuture initAndRegister() {         Channel channel = null;         try {             channel = channelFactory.newChannel();             init(channel);         } catch (Throwable t) {             if (channel != null) {                 // channel can be null if newChannel crashed (eg SocketException("too many open files"))                 channel.unsafe().closeForcibly();                 // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor                 return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);             }             // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor             return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);         }          ChannelFuture regFuture = config().group().register(channel);         if (regFuture.cause() != null) {             if (channel.isRegistered()) {                 channel.close();             } else {                 channel.unsafe().closeForcibly();             }         }          // If we are here and the promise is not failed, it's one of the following cases:         // 1) If we attempted registration from the event loop, the registration has been completed at this point.         //    i.e. It's safe to attempt bind() or connect() now because the channel has been registered.         // 2) If we attempted registration from the other thread, the registration request has been successfully         //    added to the event loop's task queue for later execution.         //    i.e. It's safe to attempt bind() or connect() now:         //         because bind() or connect() will be executed *after* the scheduled registration task is executed         //         because register(), bind(), and connect() are all bound to the same thread.          return regFuture;     } 

忽略对异常的处理,看到有三个步骤:

  1. 使用工厂创建一个channel

  2. 对这个channel进行init:由子类实现。

  3. 将创建的channel注册(register)到EventLoopGroup中,异步操作,将该操作对应的句柄返回。

看完了initAndRegister后,在回来看doBind0

    private static void doBind0(             final ChannelFuture regFuture, final Channel channel,             final SocketAddress localAddress, final ChannelPromise promise) {          // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up         // the pipeline in its channelRegistered() implementation.         channel.eventLoop().execute(new Runnable() {             @Override             public void run() {                 if (regFuture.isSuccess()) {                     channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);                 } else {                     promise.setFailure(regFuture.cause());                 }             }         });     } 

发现在doBind0中,最终是通过调用channelbind方法来完成的。而这个动作是包裹成了一个任务,提交给了channel所注册到的eventloop,由它来执行。

1.5.2. EchoClient启动调用链

首先进入Bootstrapconnect方法中:

    public ChannelFuture connect() {         validate();         SocketAddress remoteAddress = this.remoteAddress;         if (remoteAddress == null) {             throw new IllegalStateException("remoteAddress not set");         }          return doResolveAndConnect(remoteAddress, config.localAddress());     } 

同样忽略validate,直接看doResolveAndConnect

    private ChannelFuture doResolveAndConnect(final SocketAddress remoteAddress, final SocketAddress localAddress) {         final ChannelFuture regFuture = initAndRegister();         final Channel channel = regFuture.channel();          if (regFuture.isDone()) {             if (!regFuture.isSuccess()) {                 return regFuture;             }             return doResolveAndConnect0(channel, remoteAddress, localAddress, channel.newPromise());         } else {             // Registration future is almost always fulfilled already, but just in case it's not.             final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);             regFuture.addListener(new ChannelFutureListener() {                 @Override                 public void operationComplete(ChannelFuture future) throws Exception {                     // Directly obtain the cause and do a null check so we only need one volatile read in case of a                     // failure.                     Throwable cause = future.cause();                     if (cause != null) {                         // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an                         // IllegalStateException once we try to access the EventLoop of the Channel.                         promise.setFailure(cause);                     } else {                         // Registration was successful, so set the correct executor to use.                         // See https://github.com/netty/netty/issues/2586                         promise.registered();                         doResolveAndConnect0(channel, remoteAddress, localAddress, promise);                     }                 }             });             return promise;         }     } 

我们发现Bootstrap::doResolveAndConnectAbstractBootstrap::doBind类似。意思也是说,在initAndRegister完成channel的创建、初始化、绑定到EventLoop之后再进行实际的操作doResolveAndConnect0

于是我们来看doResolveAndConnect0:

     private ChannelFuture doResolveAndConnect0(final Channel channel, SocketAddress remoteAddress,                                                final SocketAddress localAddress, final ChannelPromise promise) {         try {             final EventLoop eventLoop = channel.eventLoop();             AddressResolver<SocketAddress> resolver;             try {                 resolver = this.resolver.getResolver(eventLoop);             } catch (Throwable cause) {                 channel.close();                 return promise.setFailure(cause);             }              if (!resolver.isSupported(remoteAddress) || resolver.isResolved(remoteAddress)) {                 // Resolver has no idea about what to do with the specified remote address or it's resolved already.                 doConnect(remoteAddress, localAddress, promise);                 return promise;             }              final Future<SocketAddress> resolveFuture = resolver.resolve(remoteAddress);              if (resolveFuture.isDone()) {                 final Throwable resolveFailureCause = resolveFuture.cause();                  if (resolveFailureCause != null) {                     // Failed to resolve immediately                     channel.close();                     promise.setFailure(resolveFailureCause);                 } else {                     // Succeeded to resolve immediately; cached? (or did a blocking lookup)                     doConnect(resolveFuture.getNow(), localAddress, promise);                 }                 return promise;             }              // Wait until the name resolution is finished.             resolveFuture.addListener(new FutureListener<SocketAddress>() {                 @Override                 public void operationComplete(Future<SocketAddress> future) throws Exception {                     if (future.cause() != null) {                         channel.close();                         promise.setFailure(future.cause());                     } else {                         doConnect(future.getNow(), localAddress, promise);                     }                 }             });         } catch (Throwable cause) {             promise.tryFailure(cause);         }         return promise;     } 

我们可以看出,doResolveAndConnect0正如其名:

  1. 首先获取channel所绑定的eventloop所对应的AddressResolver(从AddressResolverGroup)中拿。
  2. 拿到AddressResolver之后,如果它不知道该怎么处理给定的需要连接的地址,或者说这个地址已经被其解析过,那么就直接doConnect。否则使用AddressResolver来解析需要连接的地址(异步操作),并将doConnect操作异步化。

先暂时忽略AddressResolver,我们来看doConnect

    private static void doConnect(             final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise connectPromise) {          // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up         // the pipeline in its channelRegistered() implementation.         final Channel channel = connectPromise.channel();         channel.eventLoop().execute(new Runnable() {             @Override             public void run() {                 if (localAddress == null) {                     channel.connect(remoteAddress, connectPromise);                 } else {                     channel.connect(remoteAddress, localAddress, connectPromise);                 }                 connectPromise.addListener(ChannelFutureListener.CLOSE_ON_FAILURE);             }         });     } 

我们看到doConnect和之前的doBind0一样,最终也是调用channel的方法,并且将实际的执行交给channel绑定的eventloop来执行。

1.6. 总结

就目前debug的调用链上,我们发现涉及到的组件有:

  • Bootstrap系列:脚手架,提供给开发人员使用,类似Spring的ApplicationContext
  • Channel系列:连接通道
  • EventLoopGroup、EventLoop系列:执行器与事件驱动循环,IO模型。
  • AddressResolverGroup、AddressResolver系列:地址解析器
  • netty自定义的Future、Promise相关:异步化的基础

我们发现netty的操作全程是异步化的,并且最终要解开其原理的庐山真面目,关键还在于提及的eventloop、channel。

此阶段的纵向分析,目前只解开一隅,待我们看看eventloop、channel后,再来解开更大的谜题。

发表评论

相关文章